Skip to main content
Log in

A new physically meaningful general nonlocal reverse-space nonlinear Schrödinger equation and its novel Riemann–Hilbert method via temporal-part spectral analysis for deriving soliton solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By imposing a nonlocal reverse-space symmetry constraint on a general coupled nonlinear Schrödinger (NLS) equation, we propose a new general nonlocal reverse-space NLS equation with two free real parameters involving the effects of the self-phase modulation, the cross-phase modulation and the four-wave mixing. The proposed nonlocal equation is physically meaningful in two aspects. One is that, by solving the proposed nonlocal equation, one can obtain corresponding solutions of the general coupled NLS equation with special initial conditions. The other is that the proposed nonlocal equation is an integrable generalization of a physically significant nonlocal reverse-space NLS equation in the literature. For the proposed nonlocal equation, we develop a novel Riemann–Hilbert (RH) method where the spectral analysis is performed from the temporal part of the Lax pair rather than the spatial part as in the traditional RH approach. Firstly, the complicated spectral symmetry structure of the proposed nonlocal equation is explored in detail. Secondly, by solving the RH problem with the complicated spectral symmetry structure, soliton solutions are rigorously obtained for the nonlocal equation. Thirdly, some new soliton dynamical behaviors underlying the soliton solutions are theoretically investigated and graphically simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ablowitz, M.J.: Nonlinear waves and the inverse scattering transform. Optik 278, 170710 (2023)

    Google Scholar 

  2. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  3. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \({\cal{PT} }\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    MathSciNet  Google Scholar 

  4. Konotop, V.V., Yang, J.K., Zezyulin, D.A.: Nonlinear waves in \({\cal{PT} }\)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Google Scholar 

  5. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915 (2016)

    MathSciNet  Google Scholar 

  6. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H.: Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 59, 011501 (2018)

    MathSciNet  Google Scholar 

  7. Yang, J.K.: General \(N\)-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 383, 328 (2019)

    MathSciNet  Google Scholar 

  8. Feng, B.F., Luo, X.D., Ablowitz, M.J., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385 (2018)

    MathSciNet  Google Scholar 

  9. Ma, L.Y., Zhu, Z.N.: Nonlocal nonlinear Schrödinger equation and its discrete version: soliton solutions and gauge equivalence. J. Math. Phys. 57, 083507 (2016)

    MathSciNet  Google Scholar 

  10. Gadzhimuradov, T.A., Agalarov, A.M.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Google Scholar 

  11. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal asymptotic reductions of physically significant nonlinear equations. J. Phys. A: Math. Theor. 52, 15LT02 (2019)

    MathSciNet  Google Scholar 

  12. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7 (2017)

    MathSciNet  Google Scholar 

  13. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319 (2016)

    MathSciNet  Google Scholar 

  14. Yan, Z.Y.: Nonlocal general vector nonlinear Schrödinger equations: Integrability, \(\cal{PT} \) symmetribility, and solutions. Appl. Math. Lett. 62, 101 (2016)

    MathSciNet  Google Scholar 

  15. Sinha, D., Ghosh, P.K.: Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time-symmetric potential. Phys. Lett. A 381, 124 (2017)

    MathSciNet  Google Scholar 

  16. Ablowitz, M.J., Luo, X.D., Musslimani, Z.H., Zhu, Y.: Integrable nonlocal derivative nonlinear Schrödinger equations. Inverse Probl. 38, 065003 (2022)

    Google Scholar 

  17. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete PT symmetric model. Phys. Rev. E 90, 032912 (2014)

    Google Scholar 

  18. Gürses, M., Pekcan, A.: Multi-component AKNS systems. Wave Motion 117, 103104 (2023)

    MathSciNet  Google Scholar 

  19. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E 98, 042202 (2018)

    MathSciNet  Google Scholar 

  20. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248 (1974)

    Google Scholar 

  21. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable propertities of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    MathSciNet  Google Scholar 

  22. Novikov, S.P., Manakov, S.V., Pitaevski, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    Google Scholar 

  23. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Google Scholar 

  24. Ma, W.X., Huang, Y.H., Wang, F.D.: Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies. Stud. Appl. Math. 145, 563 (2020)

    MathSciNet  Google Scholar 

  25. Wu, J.P., Geng, X.G.: Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 53, 83 (2017)

    MathSciNet  Google Scholar 

  26. Wu, J.P.: A novel Riemann–Hilbert approach via \(t\)-part spectral analysis for a physically significant nonlocal integrable nonlinear Schrödinger equation. Nonlinearity. 36, 2021 (2023)

  27. Wu, J.P.: Riemann–Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type. Nonlinear Dyn. 107, 1127 (2022)

    Google Scholar 

  28. Fokas, A.S.: A Unified Approach to Boundary Value Problems. SIAM, Philadelphia (2008)

    Google Scholar 

  29. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295 (1993)

    MathSciNet  Google Scholar 

  30. Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the Spin-1 Gross–Pitaevskii equation. Commun. Math. Phys. 382, 585 (2021)

    MathSciNet  Google Scholar 

  31. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891 (2021)

    Google Scholar 

  32. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111, 3623 (2023)

    Google Scholar 

  33. He, J.S., Zhang, L., Cheng, Y., Li, Y.S.: Determinant representation of Darboux transformation for the AKNS system. Sci. China. A 49, 1867 (2006)

    MathSciNet  Google Scholar 

  34. Ma, W.X.: Binary Darboux transformation for general matrix mKdV equations and reduced counterparts. Chaos Solitons Fractals 146, 110824 (2021)

  35. Ji, T., Zhai, Y.Y.: Soliton, breather and rogue wave solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation. Nonlinear Dyn. 101, 619 (2020)

    Google Scholar 

  36. Li, Y., Li, J., Wang, R.Q.: Darboux transformation and soliton solutions for nonlocal Kundu-NLS equation. Nonlinear Dyn. 111, 745 (2023)

    Google Scholar 

  37. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  38. Wazwaz, A.M., Xu, G.Q.: Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711 (2020)

    Google Scholar 

  39. Ma, H.C., Mao, X., Deng, A.P.: Resonance solutions and hybrid solutions of an extended (2+1)-dimensional Kadomtsev–Petviashvili equation in fliud mechanics. Nonlinear Dyn. 111, 13439 (2023)

    Google Scholar 

  40. Wu, J.P.: \(N\)-soliton, \(M\)-breather and hybrid solutions of a time-dependent Kadomtsev–Petviashvili equation. Math. Comput. Simul. 194, 89 (2022)

    MathSciNet  Google Scholar 

  41. Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123 (2014)

    MathSciNet  Google Scholar 

  42. Hou, Y., Fan, E.G., Qiao, Z.J.: The algebro-geometric solutions for the Fokas–Olver–Rosenau–Qiao (FORQ) hierarchy. J. Geom. Phys. 117, 105 (2017)

    MathSciNet  Google Scholar 

  43. Wazwaz, A.M., Albalawi, W., EI-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

  44. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14, 597 (2022)

    Google Scholar 

  45. Zhang, R.F., Li, M.C., Al-Mosharea, E., Zheng, F.C., Bilige, S.: Rogue waves, classical lump solutions and generalized lump solutions for Sawada-Kotera-like equation. Int. J. Mod. Phys. B 36, 2250044 (2022)

    Google Scholar 

  46. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637 (2023)

  47. Wazwaz, A.M., Hammad, M.A., El-Tantawy, S.A.: Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  48. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Google Scholar 

  49. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  50. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author expresses sincere thanks to the editor and the anonymous referees for their valuable suggestions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J. A new physically meaningful general nonlocal reverse-space nonlinear Schrödinger equation and its novel Riemann–Hilbert method via temporal-part spectral analysis for deriving soliton solutions. Nonlinear Dyn 112, 561–573 (2024). https://doi.org/10.1007/s11071-023-09040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09040-2

Keywords

Navigation