Skip to main content
Log in

Output scaled consensus for heterogeneous robotic systems with aperiodically intermittent communication and transmission delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the output scaled consensus problem for networked heterogeneous robotic systems (NHRSs) in the presence of aperiodically intermittent communication, time-varying transmission delays, and uncertain dynamic terms. Compared to those traditional results that study scaled consensus, this paper can provide the following advantages and novelty: (i) Due to the interdependence of multidimensional states among individuals in many practical scenarios, this paper is the first to discuss the scaled consensus of matrix-weighted NHRSs. (ii) In this paper, we consider the case where individuals are supposed to aperiodically communicate with each other at some disconnected time intervals, thus the proposed control algorithm guarantees that the output scaled consensus of NHRSs with aperiodically intermittent communication can be achieved. (iii) A novel hierarchical aperiodically intermittent control (HAIC) framework containing two layers is proposed, which allows the considered issue to be solved in two parts and facilitates the design of the control algorithm. Based upon the Lyapunov stability, input-to-state stable property, the nearest neighbor-interactions rules, several sufficient criteria for realizing output scaled consensus are established. Furthermore, the obtained theoretical results will be extended to the case of joint-space scaled consensus for networked robotic systems, which shows the versatility of the HAIC algorithm. Finally, numerical simulation examples are performed to validate the validity of the theoretical results provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Shi, P., Yan, B.: A survey on intelligent control for multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 161–175 (2021)

    Article  Google Scholar 

  2. Yu, Z., Zhang, W.: Almost sure consensus of stochastic nonlinear multi-agent systems via event-triggered control. Nonlinear Dyn. 111, 3469–3478 (2023)

    Article  Google Scholar 

  3. Guo, S., You, R., Ahn, C.K.: Adaptive consensus for multi-agent systems with switched nonlinear dynamics and switching directed topologies. Nonlinear Dyn. 111, 1285–1299 (2023)

    Article  Google Scholar 

  4. Xu, B., Zhang, H.-T., Meng, H., Hu, B., Chen, D., Chen, G.: Moving target surrounding control of linear multiagent systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 52(3), 1705–1715 (2022)

    Article  Google Scholar 

  5. Ge, M.-F., Gu, Z.-W., Su, P., Liang, C.-D., Lu, X.: State-constrained bipartite tracking of interconnected robotic systems via hierarchical prescribed-performance control. Nonlinear Dyn. 111, 9275–9288 (2023)

    Article  Google Scholar 

  6. Han, T., Zheng, W.X.: Bipartite output consensus for heterogeneous multi-agent systems via output regulation approach. IEEE Trans. Circuits Syst. II Exp. Briefs 68(1), 281–285 (2021)

    Google Scholar 

  7. Han, T., Guan, Z.-H., Xiao, B., Yan, H.: Bipartite average tracking for multi-agent systems with disturbances: finite-time and fixed-time convergence. IEEE Trans. Circuits Syst. I Regul. Papers 68(10), 4393–4402 (2021)

    Article  Google Scholar 

  8. Jiang, Y., Liu, Z., Chen, Z.: Prescribed-time distributed formation control for a class of nonlinear multi-agent systems subject to internal uncertainties and external disturbances. Nonlinear Dyn. 111, 1643–1655 (2023)

    Article  Google Scholar 

  9. Wen, G., Zhao, Y., Duan, Z., Yu, W., Chen, G.: Containment of higher-order multi-leader multi-agent systems: A dynamic output approach. IEEE Trans. Autom. Control 61(4), 1135–1140 (2016)

    Article  MathSciNet  Google Scholar 

  10. Xu, J., Wang, L., Liu, Y., Xue, H.: Event-triggered optimal containment control for multi-agent systems subject to state constraints via reinforcement learning. Nonlinear Dyn. 109, 1651–1670 (2022)

    Article  Google Scholar 

  11. Ge, M.-F., Guan, Z.-H., Hu, B., He, D.-X., Liao, R.-Q.: Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction. Automatica 69, 410–417 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zhang, Y., Jiang, Y., Zhang, W., Ai, X.: Distributed coordinated tracking control for multi-manipulator systems under intermittent communications. Nonlinear Dyn. 107, 3573–3591 (2022)

    Article  Google Scholar 

  13. Yao, X.-Y., Ding, H.-F., Ge, M.-F.: Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. Nonlinear Dyn. 92(4), 1649–1664 (2018)

    Article  Google Scholar 

  14. Wang, H.: Task-space synchronization of networked robotic systems with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 58(12), 3169–3174 (2013)

    Article  MathSciNet  Google Scholar 

  15. Liang, C.-D., Wang, L., Yao, X.-Y., Liu, Z.-W., Ge, M.-F.: Multi-target tracking of networked heterogeneous collaborative robots in task space. Nonlinear Dyn. 97(31), 1159–1173 (2019)

    Article  Google Scholar 

  16. Liang, X., Wang, H., Liu, Y.H., Chen, W., Hu, G., Zhao, J.: Adaptive task-space cooperative tracking control of networked robotic manipulators without task-space velocity measurements. IEEE Trans. Cybern. 46(10), 2386–2398 (2015)

    Article  Google Scholar 

  17. Liang, C.-D., Ge, M.-F., Liu, Z.-W., Wang, Y.-W., Karimi, H.R.: Output multi-formation tracking of networked heterogeneous robotic systems via finite-time hierarchical control. IEEE Trans. Cybern. 51(6), 2893–2904 (2021)

    Article  Google Scholar 

  18. Zhao, X.-F., Han, T., Xiao, B., Yan, H., Ge, M.-F., Liang, C.-D.: Task-space time-varying formation tracking for networked heterogeneous Euler-Lagrange systems via hierarchical predefined-time control approach. Nonlinear Dyn. 109, 2675–2692 (2022)

    Article  Google Scholar 

  19. Liang, C.-D., Ge, M.-F., Liu, Z.-W., Wang, Y.-Z., Li, B.: Multitarget tracking for multiple Lagrangian plants with input-to-output redundancy and sampled-data interactions. IEEE Trans. Syst. Man Cybern. Syst. 52(9), 5611–5622 (2022)

    Article  Google Scholar 

  20. Ning, B., Han, Q.-L.: Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics. IEEE Trans. Autom. Control 64(4), 1686–1693 (2019)

    Article  MathSciNet  Google Scholar 

  21. Wang, L., Xiao, F.: Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ning, B., Han, Q.-L.: Practical fixed-time consensus for integrator-type multi-agent systems: A time base generator approach. Automatica 105, 406–414 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, Z.-W., Wen, G., Yu, X., Guan, Z.-H., Huang, T.: Delayed impulsive control for consensus of multi-agent systems with switching communication graphs. IEEE Trans. Cybern. 50(7), 3045–3055 (2020)

    Article  Google Scholar 

  24. Xia, W., Cao, M.: Clustering in diffusively coupled networks. Automatica 47, 2395–2405 (2011)

    Article  MathSciNet  Google Scholar 

  25. Sun, F., Wu, X., Kurths, J., Zhu, W.: Group consensus of heterogeneous multi-agent systems with packet loss and unknown speed of second-order agents in cooperativeC-competitive networks. Nonlinear Dyn. 110, 3447–3461 (2022)

    Article  Google Scholar 

  26. Dong, J.-W., Liang, C.-D., Ge, M.-F., Ding, T.-F., Zhao, X.-W., Liu, Z.-W.: Finite-time multi-target tracking of networked Euler-Lagrange systems via hierarchical active disturbance rejection control. Int. J. Control 95(10), 2743–2757 (2022)

    Article  MathSciNet  Google Scholar 

  27. Roy, S.: Scaled consensus. Automatica 51, 259–262 (2015)

    Article  MathSciNet  Google Scholar 

  28. Meng, D., Jia, Y.: Scaled consensus problems on switching networks. IEEE Trans. Autom. Control 61(6), 1664–1669 (2016)

    Article  MathSciNet  Google Scholar 

  29. He, W., Guo, H., Qian, F.: Scaled consensus of second-order multiagent systems via distributed adaptive control. Int. J. Robust Nonlinear Control 31(9), 4247–4261 (2021)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Z., Chen, S., Zheng, Y.: Fully distributed scaled consensus tracking of high-order multiagent systems with time delays and disturbances. IEEE Trans. Ind. Inf. 18(1), 305–314 (2022)

    Article  Google Scholar 

  31. Ding, T.-F., Ge, M.-F., Xiong, C.-H., Park, J.H., Li, M.: Second-order bipartite consensus for networked robotic systems with quantized-data interactions and time-varying transmission delays. ISA Trans. 108, 178–187 (2021)

    Article  Google Scholar 

  32. Yao, X.-Y., Ding, H.-F., Ge, M.-F.: Synchronization control for multiple heterogeneous robotic systems with parameter uncertainties and communication delays. J. Franklin Inst. 356(16), 9713–9729 (2019)

    Article  MathSciNet  Google Scholar 

  33. Klotz, J.R., Obuz, S., Kan, Z., Dixon, W.E.: Synchronization of uncertain Euler-Lagrange systems with uncertain time-varying communication delays. IEEE Trans. Cybern. 48(2), 807–817 (2018)

    Article  Google Scholar 

  34. Zhou, H., Liu, Z., Li, W.: Sampled-data intermittent synchronization of complex-valued complex network with actuator saturations. Nonlinear Dyn. 107, 1023–1047 (2022)

    Article  Google Scholar 

  35. Zhou, H., Yang, W., Feng, J., Li, W.: Periodic self-triggered intermittent sampled-data stabilization for stochastic complex networks. Nonlinear Dyn. 109, 1723–1741 (2022)

    Article  Google Scholar 

  36. Yu, Z., Jiang, H., Hu, C., Fan, X.: Consensus of second-order multi-agent systems with delayed nonlinear dynamics and aperiodically intermittent communications. Int. J. Robust Nonlinear Control 90(5), 909–922 (2016)

  37. Parsegov, S.E., Proskurnikov, A.V., Tempo, R., Friedkin, N.E.: Novel multidimensional models of opinion dynamics in social networks. IEEE Trans. Autom. Control 62(5), 2270–2285 (2017)

    Article  MathSciNet  Google Scholar 

  38. Zhao, X.-F., Han, T., Guan, Z.-H., Xiao, B., Yan, H., Ge, Y.: Hierarchical prescribed-time coordination for multiple Lagrangian systems with input-to-output redundancy and matrix-weighted networks. IEEE Trans. Circuits Syst. I Regul. Papers 70(1), 447–459 (2023)

    Article  Google Scholar 

  39. Miao, S., Su, H.: Bipartite consensus for second-order multiagent systems with matrix-weighted signed network. IEEE Trans. Cybern. 52(12), 13038–13047 (2022)

    Article  Google Scholar 

  40. Ding, T.-F., Ge, M.-F., Liu, Z.-W., Wang, Y.-W., Karimi, H.R.: Lag-bipartite formation tracking of networked robotic systems over directed matrix-weighted signed graphs. IEEE Trans. Cybern. 52(7), 6759–6770 (2022)

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (62071173) and the Natural Science Foundation of Hubei Province (2022CFB479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Zhao, XF., Xiao, B. et al. Output scaled consensus for heterogeneous robotic systems with aperiodically intermittent communication and transmission delays. Nonlinear Dyn 111, 22323–22343 (2023). https://doi.org/10.1007/s11071-023-09037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09037-x

Keywords

Navigation