Skip to main content
Log in

Accurate nonlinear dynamic characteristics analysis of quasi-zero-stiffness vibration isolator via a modified incremental harmonic balance method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Quasi-zero-stiffness (QZS) vibration isolator is widely used in low-frequency vibration isolation due to its high-static-low-dynamic-stiffness (HSLDS) characteristics. The complex nonlinear force of the QZS vibration isolator increases the difficulty of solving it while realizing the HSLDS characteristics. The typical analysis method is to use Taylor expansion to simplify the nonlinear force and make it approximate to polynomial form, which leads to inaccurate analysis results in the case of large excitation and small damping. Therefore, the modified incremental harmonic balance (IHB) method is used to directly analyze the dynamic characteristics of the QZS vibration isolator without simplification in this paper. The classical three-spring QZS vibration isolation model is used as the calculation example. The results are different from the previous approximate equation analysis results in three aspects: (1) There is no unbounded response of the system under displacement excitation; (2) Even harmonics and constant terms also exist in the response of the system and can lead to multiple solution intervals; (3) In the case of small damping and large excitation, both displacement excitation and force excitation have subharmonic resonance, reducing the vibration isolation performance of the system. In addition, the accuracy of the solution obtained by the IHB method is verified by the Runge–Kutta method. The accurate analysis method in this paper provides favorable theoretical support for the design and optimization of vibration isolators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Guo, L., Wang, X., Fan, R., Bi, F.: Review on development of high-static–low-dynamic-stiffness seat cushion mattress for vibration control of seating suspension system. Appl. Sci. 10(8), 2887 (2020). https://doi.org/10.3390/app10082887

    Article  Google Scholar 

  2. Liu, C., Jing, X., Daley, S., Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015). https://doi.org/10.1016/j.ymssp.2014.10.007

    Article  Google Scholar 

  3. Balaji, P., SelvaKumar, K.: Applications of nonlinearity in passive vibration control: a review. J. Vib. Eng. Technol. 9(2), 183–213 (2021). https://doi.org/10.1007/s42417-020-00216-3

    Article  Google Scholar 

  4. Yan, B., Yu, N., Wu, C.: A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Appl. Math. Mech. 43(7), 1045–1062 (2022). https://doi.org/10.1007/s10483-022-2868-5

    Article  Google Scholar 

  5. Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008). https://doi.org/10.1016/j.jsv.2008.01.014

    Article  Google Scholar 

  6. Carrella, A., Brennan, M., Waters, T.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  7. Carrella, A., Brennan, M., Waters, T., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  8. Sun, X., Jing, X., Xu, J., Chen, L.: A quasi-zero-stiffness-based sensor system in vibration measurement. IEEE Trans. Ind. Electron. 61(10), 5606–5614 (2014). https://doi.org/10.1109/TIE.2013.2297297

    Article  Google Scholar 

  9. Zhao, F., Cao, S., Luo, Q., Li, L., Jin, J.: Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness. Nonlinear Dyn. 108(4), 3313–3330 (2022). https://doi.org/10.1007/s11071-022-07368-9

    Article  Google Scholar 

  10. Wen, G., Lin, Y., He, J.: A quasi-zero-stiffness isolator with a shear-thinning viscous damper. Appl. Math. Mech. 43(3), 311–326 (2022). https://doi.org/10.1007/s10483-022-2829-9

    Article  MathSciNet  Google Scholar 

  11. Xu, D., Yu, Q., Zhou, J., Bishop, S.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013). https://doi.org/10.1016/j.jsv.2013.01.034

    Article  Google Scholar 

  12. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. J. Sound Vib. 346, 53–69 (2015). https://doi.org/10.1016/j.jsv.2015.02.005

    Article  Google Scholar 

  13. Zhou, J., Xiao, Q., Xu, D., Ouyang, H., Li, Y.: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. J. Sound Vib. 394, 59–74 (2017). https://doi.org/10.1016/j.jsv.2017.01.021

    Article  Google Scholar 

  14. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  15. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013). https://doi.org/10.1016/j.jsv.2012.10.037

    Article  Google Scholar 

  16. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76(2), 1157–1167 (2014). https://doi.org/10.1007/s11071-013-1199-7

    Article  MathSciNet  Google Scholar 

  17. Liu, C., Yu, K.: Design and experimental study of a quasi-zero-stiffness vibration isolator incorporating transverse groove springs. Arch. Civ. Mech. Eng. 20(3), 67 (2020). https://doi.org/10.1007/s43452-020-00069-3

    Article  Google Scholar 

  18. Zhou, J., Xu, D., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015). https://doi.org/10.1016/j.jsv.2014.10.027

    Article  Google Scholar 

  19. Zhang, C., He, J., Zhou, G., Wang, K., Xu, D., Zhou, J.: Compliant quasi-zero-stiffness isolator for low-frequency torsional vibration isolation. Mech. Mach. Theory 181, 105213 (2023). https://doi.org/10.1016/j.mechmachtheory.2022.105213

    Article  Google Scholar 

  20. Shahraeeni, M., Sorokin, V., Mace, B., Ilanko, S.: Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator. J. Sound Vib. 526, 116822 (2022). https://doi.org/10.1016/j.jsv.2022.116822

    Article  Google Scholar 

  21. Yan, G., Zou, H., Wang, S., Zhao, L., Wu, Z., Zhang, W.: Bio-inspired vibration isolation: methodology and design. Appl. Mech. Rev. 73(2), 020801 (2021). https://doi.org/10.1115/1.4049946

    Article  Google Scholar 

  22. Jing, X.: The X-structure/mechanism approach to beneficial nonlinear design in engineering. Appl. Math. Mech. 43(7), 979–1000 (2022). https://doi.org/10.1007/s10483-022-2862-6

    Article  Google Scholar 

  23. Dai, H., Jing, X., Sun, C., Wang, Y., Yue, X.: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture. Mech. Syst. Signal Process. 109, 111–133 (2018). https://doi.org/10.1016/j.ymssp.2018.02.048

    Article  Google Scholar 

  24. Jing, X., Zhang, L., Feng, X., Sun, C., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019). https://doi.org/10.1016/j.ymssp.2018.09.004

    Article  Google Scholar 

  25. Deng, T., Wen, G., Ding, H., Lu, Z., Chen, L.: A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mech. Syst. Signal Process. 145, 106967 (2020). https://doi.org/10.1016/j.ymssp.2020.106967

    Article  Google Scholar 

  26. Yan, G., Qi, W., Shi, J., Yan, H., Zou, H., Zhao, L., Wu, Z., Fang, X., Li, X., Zhang, W.: Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. J. Sound Vib. 525, 116799 (2022). https://doi.org/10.1016/j.jsv.2022.116799

    Article  Google Scholar 

  27. Ji, J., Luo, Q., Ye, K.: Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal Process. 161, 107945 (2021). https://doi.org/10.1016/j.ymssp.2021.107945

    Article  Google Scholar 

  28. Wu, W., Tang, B.: Performance analysis of a geometrically nonlinear isolation system subjected to high levels of excitation. Appl. Math. Model. 108, 612–628 (2022). https://doi.org/10.1016/j.apm.2022.03.042

    Article  MathSciNet  Google Scholar 

  29. Hao, Z., Cao, Q.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015). https://doi.org/10.1016/j.jsv.2014.11.038

    Article  Google Scholar 

  30. Liu, C., Yu, K.: Accurate modeling and analysis of a typical nonlinear vibration isolator with quasi-zero stiffness. Nonlinear Dyn. 100(3), 2141–2165 (2020). https://doi.org/10.1007/s11071-020-05642-2

    Article  Google Scholar 

  31. Pei, L., Chong, A., Pavlovskaia, E., Wiercigroch, M.: Computation of periodic orbits for piecewise linear oscillator by Harmonic balance methods. Commun. Nonlinear Sci. Numer. Simul. 108, 106220 (2022). https://doi.org/10.1016/j.cnsns.2021.106220

    Article  MathSciNet  Google Scholar 

  32. Wang, S., Hua, L., Yang, C., Zhang, Y., Tan, X.: Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dyn. 92(4), 1719–1732 (2018). https://doi.org/10.1007/s11071-018-4157-6

    Article  Google Scholar 

  33. Niu, J., Shen, Y., Yang, S., Li, S.: Higher-order approximate steady-state solutions for strongly nonlinear systems by the improved incremental harmonic balance method. J. Vib. Control 24(16), 3744–3757 (2018). https://doi.org/10.1177/1077546317710160

    Article  MathSciNet  Google Scholar 

  34. Wu, H., Zeng, X., Liu, Y., Lai, J.: Analysis of harmonically forced duffing oscillator with time delay state feedback by incremental Harmonic balance method. J. Vib. Eng. Technol. 9(6), 1239–1251 (2021). https://doi.org/10.1007/s42417-021-00293-y

    Article  Google Scholar 

  35. Wang, S., Zhang, Y., Guo, W., Pi, T., Xiao, X.: Vibration analysis of nonlinear damping systems by the discrete incremental harmonic balance method. Nonlinear Dyn. 111(3), 2009–2028 (2023). https://doi.org/10.1007/s11071-022-07953-y

    Article  Google Scholar 

  36. Yu, Y., Yao, G., Wu, Z.: Nonlinear primary responses of a bilateral supported X-shape vibration reduction structure. Mech. Syst. Signal Process. 140, 106679 (2020). https://doi.org/10.1016/j.ymssp.2020.106679

    Article  Google Scholar 

  37. Zeng, R., Yin, S., Wen, G., Zhou, J.: A non-smooth quasi-zero-stiffness isolator with displacement constraints. Int. J. Mech. Sci. 225, 107351 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107351

    Article  Google Scholar 

  38. Ju, R., Fan, W., Zhu, W.: An efficient Galerkin averaging-incremental Harmonic Balance method based on the fast Fourier transform and tensor contraction. J. Vib. Acoust. 142(6), 061011 (2020). https://doi.org/10.1115/1.4047235

    Article  Google Scholar 

  39. Ju, R., Fan, W., Zhu, W.: Comparison between the incremental harmonic balance method and alternating frequency/time-domain method. J. Vib. Acoust. 143(2), 024501 (2021). https://doi.org/10.1115/1.4048173

    Article  Google Scholar 

  40. Hou, L., Chen, Y., Chen, Y.: Combination resonances of a dual-rotor system with inter-shaft bearing. Nonlinear Dyn. 111, 1–23 (2022)

    Google Scholar 

  41. Chen, Y., Hou, L., Chen, G., Song, H., Lin, R.: Nonlinear dynamics analysis of a dual-rotor-bearing-casing system based on a modified HB-AFT method. Mech. Syst. Signal Process. 185, 109805 (2023)

    Article  Google Scholar 

  42. Hu, X., Zhou, C.: The effect of various damping on the isolation performance of quasi-zero-stiffness system. Mech. Syst. Signal Process. 171, 108944 (2022). https://doi.org/10.1016/j.ymssp.2022.108944

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the financial support from the National Natural Science Foundation of China (Grant No. 11972129), the Natural Science Foundation of Heilongjiang Province (Outstanding Youth Foundation, Grant No. YQ2022A008), the Fundamental Research Funds for the Central Universities and the Shandong Provincial Natural Science Foundation (No. ZR2020MA055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Hou, L., Lin, R. et al. Accurate nonlinear dynamic characteristics analysis of quasi-zero-stiffness vibration isolator via a modified incremental harmonic balance method. Nonlinear Dyn 112, 125–150 (2024). https://doi.org/10.1007/s11071-023-09036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09036-y

Keywords

Navigation