Skip to main content
Log in

Exploring thickness-dependent Cu/TiOx:Cu/Ti memristor and chaotic dynamics in a real fifth-order memristive circuit

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Memristors with nonlinear characteristics can replace passive devices to construct nonlinear and chaotic circuits, which gives new challenges and opportunities to traditional circuits. This paper presents a series of Cu-doped Cu/TiOx:Cu/Ti physical memristors with various TiO2 thicknesses by controlling the sputtering time, whose characteristics and mathematical models are explored based on the switching mechanism and v–i characteristics. To better characterize the effect of the physical memristor, a fifth-order memristive circuit is built based on it. With its dimensionless equations, complex coexisting behaviors of multiple kinds of attractors, including stable point attractors, limit cycles, and chaotic attractors, are numerically revealed. In addition, a hardware circuit with physical memristors is implemented, from which multiple coexisting attractors are conveniently captured, verifying the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Google Scholar 

  2. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Google Scholar 

  3. Peng, Z.H., Wu, F.C., Jiang, L., et al.: HfO2-Based memristor as an artificial synapse for neuromorphic computing with Tri-Layer HfO2/BiFeO3/HfO2 design. Adv. Funct. Mater. 31, 2107131 (2021)

    Google Scholar 

  4. Ji, X., Qi, D., Dong, Z., et al.: TSSM: three-state switchable memristor model based on Ag/TiOx nanobelt/Ti configuration. Int. J. Bifurc. Chaos 31, 2130020 (2021)

    Google Scholar 

  5. Kim, I.S., Woo, J.U., Hwang, H.G., et al.: Artificial synaptic and self-rectifying properties of crystalline (Na1-xKx)NbO3 thin films grown on Sr2Nb3O10 nanosheet seed layers. J. Mater. Sci. Technol. 123, 136–143 (2022)

    Google Scholar 

  6. Gutsche, A., Siegel, S., Zhang, J.C., et al.: Exploring area-dependent Pr0.7Ca0.3MnO3-based memristive devices as synapses in spiking and artificial neural networks. Front. Neurosci. 15, 661261 (2021)

    Google Scholar 

  7. Zhou, E., Fang, L., Liu, R., et al.: Area-efficient memristor spiking neural networks and supervised learning method. Sci. China: Inf. Sci. 9, 3 (2019)

    Google Scholar 

  8. Wang, X.P., Wan, H.B., Chen, Q., Yang, R.: A logic circuit design for perfecting memristor-based material implication. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 36, 279–284 (2017)

    Google Scholar 

  9. Jiang, F.H., Yuan, F., Li, Y.X.: Design and implementation of XOR logic circuit based on generalized memristor. Eur. Phys. J. Spec. Top. 231, 481–491 (2022)

    Google Scholar 

  10. Ali, K.A., Rizk, M., Baghdadi, A., et al.: Memristive computational memory using memristor overwrite logic (MOL). IEEE Trans. Very Large Scale Integr. 28, 2370–2382 (2020)

    Google Scholar 

  11. Wang, X.Y., Li, P., Ji, C.X., et al.: General modeling method of threshold-type multivalued memristor and its application in digital logic circuits. Int. J. Bifurc. Chaos 31, 2150248 (2021)

    MathSciNet  Google Scholar 

  12. Liu, X.Y., Huang, Y., Zeng, Z.G., Wunsch, D.C.: Memristor-based HTM spatial pooler with on-device learning for pattern recognition. IEEE Trans. Syst. Man Cybern.-Syst. 52, 1901–1915 (2022)

    Google Scholar 

  13. Lin, P., Li, C., Wang, Z., et al.: Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3, 225–232 (2020)

    Google Scholar 

  14. Vijay, H.M., Ramakrishnan, V.N.: Radiation effects on memristor-based nonvolatile SRAM cells. J. Comput. Electron. 17, 279–287 (2018)

    Google Scholar 

  15. Lanza M, Sebastian A, Lu W D, et al.: Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

  16. Di Marco, M., Forti, M., Pancioni, L., et al.: Memristor neural networks for linear and quadratic programming problems. IEEE Trans. Cybern. 52, 1822–1835 (2022)

    Google Scholar 

  17. Li, C., Belkin, D., Li, Y., et al.: Efficient and self-adaptive in-Situ learning in multilayer memristor neural networks. Nat. Commun. 9, 2385 (2018)

    Google Scholar 

  18. Faggini, M.: Chaos and chaotic dynamics in economics. Nonlinear Dyn. Psychol. Life Sci. 13, 327–340 (2009)

    MathSciNet  Google Scholar 

  19. Kim, M.S.: Chaos theory: an alternative for a paradigm shift in the social science studies. J. Korea Acad.-Ind. Cooper. Soc. 15, 6621–6629 (2014)

    Google Scholar 

  20. Strogatz, S.H.: Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Perseus Books, USA (1994)

    Google Scholar 

  21. Bru Villaseca, L.: The revolution of chaos. Chaos and biology. Anal. Real Acad. Nac. Med. 107, 339–351 (1990)

    Google Scholar 

  22. Grassi, G.: Chaos in the real world: recent applications to communications, computing, distributed sensing, robotic motion. Bio-impedance modelling and encryption systems. Symmetry 13, 2151 (2021)

    Google Scholar 

  23. Peng, Y.X., Sun, K.H., He, S.B.: Parameter identification for discrete memristive chaotic map using adaptive differential evolution algorithm. Nonlinear Dyn. 107, 1263–1275 (2022)

    Google Scholar 

  24. Itoh, M., Chua, L.O.: Memristor oscillators. Int. J. Bifurc. Chaos 18, 3183–3206 (2008)

    MathSciNet  Google Scholar 

  25. Tan, Q.W., Zeng, Y.C., Li, Z.J.: A simple inductor-free memristive circuit with three line equilibria. Nonlinear Dyn. 94, 1585–1602 (2018)

    Google Scholar 

  26. Zhang, Y.Z., Liu, Z., Wu, H.G., et al.: Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Solitons Fractals 127, 354–363 (2019)

    MathSciNet  Google Scholar 

  27. Huang, L.L., Liu, S., Xiang, J.H., Wang, L.Y.: Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors. Chin. Phys. B 30, 100506 (2021)

    Google Scholar 

  28. Lai, Q., Chen, Z.J.: Grid-scroll memristive chaotic system with application to image encryption. Chaos Solitons Fractals 170, 113341 (2023)

    MathSciNet  Google Scholar 

  29. Lai, Q., Wan, Z.Q., Zhang, H., Chen, G.R.: Design and analysis of multiscroll memristive Hopfield neural network with adjustable memductance and application to image encryption. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146570

    Article  Google Scholar 

  30. Sahin, M.E., Guler, H., Hamamci, S.E.: Design and realization of a hyperchaotic memristive system for communication system on FPGA. Traitem. Signal 37, 939–953 (2020)

    Google Scholar 

  31. Luo, J., Qu, S.C., Chen, Y., et al.: Synchronization, circuit and secure communication implementation of a memristor-based hyperchaotic system using single input controller. Chin. J. Phys. 71, 403–417 (2021)

    MathSciNet  Google Scholar 

  32. Ma, M.L., Fang, Y.J., Li, Z.J., et al.: Bursting oscillations and bifurcation mechanism in a fully integrated piecewise-smooth chaotic system. Eur. Phys. J.-Spec. Top. 230, 1737–1749 (2021)

    Google Scholar 

  33. Wen, Z.H., Li, Z.J., Li, X.: Bursting oscillations and bifurcation mechanism in memristor-based Shimizu–Morioka system with two time scales. Chaos Solitons Fractals 128, 58–70 (2019)

    MathSciNet  Google Scholar 

  34. Zhang, S., Li, C.B., Zheng, J.H., et al.: Generating any number of diversified hidden attractors via memristor coupling. IEEE Trans. Circuits Syst. I-Regul. Pap. 68, 4945–4956 (2021)

    Google Scholar 

  35. Sun, J.W., Zhao, X.T., Fang, J., Wang, Y.F.: Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 94, 2879–2887 (2018)

    Google Scholar 

  36. Sen, Z., Li, C.B., Zheng, J.H., et al.: Generating any number of initial offset-boosted coexisting Chua’s double-scroll attractors via piecewise-nonlinear memristor. IEEE Trans. Electron Devices 69, 7202–7212 (2022)

    Google Scholar 

  37. Batas, D., Fiedler, H.: A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling. Nanotechnol. IEEE Trans. Nanotechnol. 10, 250–255 (2011)

    Google Scholar 

  38. Abraham, I., Ren, S.Y., Siferd, R.E.: Logistic function based memristor model with circuit application. IEEE Access 7, 166451–166462 (2019)

    Google Scholar 

  39. Liang, Y., Wang, G., Chen, G., et al.: S-type locally active memristor-based periodic and chaotic oscillators. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 5139–5152 (2020)

    MathSciNet  Google Scholar 

  40. Bao, H., Wang, N., Wu, H.G., et al.: Bi-stability in an improved memristor-based third-order Wien–Bridge oscillator. IETE Tech. Rev. 36, 109–116 (2019)

    Google Scholar 

  41. Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017)

    Google Scholar 

  42. Volos, C.K., Pham, V.T., Nistazakis, H.E., Stouboulos, I.N.: A dream that has come true chaos from a nonlinear circuit with a real memristor. Int. J. Bifurc. Chaos 30, 2030036 (2020)

    MathSciNet  Google Scholar 

  43. Minati, L., Gambuzza, L.V., Thio, W.J., Sprott, J.C., Frasca, M.: A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 138, 109990 (2020)

    MathSciNet  Google Scholar 

  44. Sera, K., Lim, M.J., Chung, K.B.: Multi-level characteristics of TiOx transparent non-volatile resistive switching device by embedding SiO2 nanoparticles. Sci. Rep. 11, 9883 (2021)

    Google Scholar 

  45. Yang, J.J., Pickett, M.D., Li, X.M., et al.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the help of the college of mechanical and electronic engineering, Shandong University of Science and Technology.

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 62371274 and 61973200), Natural Science Foundation of Shandong Province (Grant No. ZR2023MF004), and Qingdao Natural Science Foundation (Grant No. 23-2-1-151-zyyd-jch). This work was also supported by the Elite Project of Shandong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Li, S., Zhang, P. et al. Exploring thickness-dependent Cu/TiOx:Cu/Ti memristor and chaotic dynamics in a real fifth-order memristive circuit. Nonlinear Dyn 112, 1377–1394 (2024). https://doi.org/10.1007/s11071-023-09032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09032-2

Keywords

Navigation