Skip to main content
Log in

State estimation for a nonlinear fractional-order system with correlated noises considering influence of initial value

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the influence of initial value (IIV) aiming at nonlinear continuous-time fractional-order systems (FOSs), which contain the correlated noises via fractional-order hybrid extended-cubature Kalman filters (HECKFs). Typically, the choice of initial values for the estimated system greatly affects the accuracy of state estimation; hence, the model transformation method is used to weaken IIV. The continuous-time FOS is discretized by using the Grünwald–Letnikov difference to obtain the difference equation. By utilizing the third-degree spherical-radial rule and the cubature points to represent nonlinear functions in the state equation and output equation, a fractional-order HECKF to deal with the correlated noise is proposed to achieve an effective state estimation. Finally, the effectiveness of the proposed algorithm is verified with two simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No data were used for the research described in the article.

References

  1. García-Sandoval, J.P.: On representation and interpretation of Fractional calculus and fractional order systems. Fract. Calc. Appl. Anal. 22, 522–537 (2019)

    MathSciNet  Google Scholar 

  2. Li, Z., Liu, L., Dehghan, S., Chen, Y.Q., Ding, D.Y.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2016)

    MathSciNet  Google Scholar 

  3. Saadia, A., Rashdi, A.: Incorporating fractional calculus in echo-cardiographic image denoising. Comput. Electric. Eng. 67, 134–144 (2018)

    Google Scholar 

  4. Yu, S.Y., Feng, Y.Y., Yang, X.P.: Extended state observer-based fractional order sliding-mode control of piezoelectric actuators. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 235(1), 39–51 (2021)

    Google Scholar 

  5. Khoshnevisan, L., Liu, X.Z.: Fractional order predictive sliding-mode control for a class of nonlinear input-delay systems: singular and non-singular approach. Int. J. Syst. Sci. 50(5), 1039–1051 (2019)

    MathSciNet  Google Scholar 

  6. Fei, J.T., Lu, C.: Adaptive fractional order sliding mode controller with neural estimator. J. Franklin Inst. 355(5), 2369–2391 (2018)

    MathSciNet  Google Scholar 

  7. Arora, S., Mathur, T., Agarwal, S., Tiwari, K., Gupta, P.: Applications of fractional calculus in computer vision: a survey. Neurocomputing 489, 407–428 (2022)

    Google Scholar 

  8. Miljković, N., Popović, N., Djordjević, O., Konstantinović, L., S̆ekara, T.B.: ECG artifact cancellation in surface EMG signals by fractional order calculus application. Comput. Methods Progr. Biomed. 140, 259–264 (2017)

    Google Scholar 

  9. Chen, W., Zhu, L.N., Dai, Y.M., Jiang, J.S., Bu, S.S., Xu, X.Q., Wu, F.Y.: Differentiation of salivary gland tumor using diffusion-weighted imaging with a fractional order calculus model. Brit. J. Radiol. 93(1113), 20200052 (2020)

    Google Scholar 

  10. Pirasteh-Moghadam, M., Saryazdi, MGh., Loghman, E., Kamali E, A., Bakhtiari-Nejad, F.: Development of neural fractional order PID controller with emulator. ISA Trans. 106, 293–302 (2020)

    Google Scholar 

  11. Li, Z.J., Ding, J., Wu, M., Lin, J.X.: Discrete fractional order PID controller design for nonlinear systems. Int. J. Syst. Sci. 52(15), 3206–3213 (2021)

    MathSciNet  Google Scholar 

  12. Chen, L.P., Wu, R.C., He, Y.G., Chai, Y.: Adaptive sliding-mode control for fractional-order uncertain linear systems with nonlinear disturbances. Nonlinear Dyn. 80, 51–58 (2015)

    MathSciNet  Google Scholar 

  13. Wei, X., Liu, D.Y., Boutat, D.: Non-asymptotic Pseudo-state estimation for a class of fractional order linear systems. IEEE Trans. Autom. Control 62(3), 1150–1164 (2017)

    Google Scholar 

  14. Buchstaller, D., Liu, J., French, M.: The deterministic interpretation of the Kalman filter. Int. J. Control 94(11), 3226–3236 (2021)

  15. Gultekin, S., Paisley, J.: Nonlinear Kalman filtering with divergence minimization. IEEE Trans. Signal Process. 65(23), 6319–6331 (2017)

    MathSciNet  Google Scholar 

  16. Potokar, E.R., Norman, K., Mangelson, J.G.: Invariant extended Kalman filtering for underwater navigation. IEEE Robot. Autom. Lett. 6(3), 5792–5799 (2021)

    Google Scholar 

  17. Ferrero, R., Pegoraro, P.A., Toscani, S.: Dynamic synchrophasor estimation by extended Kalman filter. IEEE Trans. Instrum. Meas. 69(7), 4818–4826 (2020)

    Google Scholar 

  18. Barrau, A., Bonnabel, S.: The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62(4), 1797–1812 (2017)

    MathSciNet  Google Scholar 

  19. Lou, T.S., Wang, L., Su, H.S., Nie, M.W., Yang, N., Wang, Y.F.: Desensitized cubature Kalman filter with uncertain parameters. J. Franklin Inst. 354(18), 8358–8373 (2017)

    MathSciNet  Google Scholar 

  20. Xu, B., Zhang, P., Wen, H.Z., Wu, X.: Stochastic stability and performance analysis of cubature Kalman filter. Neurocomputing 186, 218–227 (2016)

    Google Scholar 

  21. Hao, G., Sun, S.L.: Distributed fusion cubature Kalman filters for nonlinear systems. Int. J. Robust Nonlinear Control 29(17), 5979–5991 (2019)

    MathSciNet  Google Scholar 

  22. Mawonou, K.S.R., Eddahech, A., Dumur, D., Beauvois, D., Godoy, E.: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. J. Power Sources 435, 226710 (2019)

    Google Scholar 

  23. Huang, X.M., Gao, Z., Ma, R.C., Chen, X.J.: Extended Kalman filters for fractional-order nonlinear continuous-time systems containing unknown parameters with correlated colored noises. Int. J. Robust Nonlinear Control 29(17), 5930–5956 (2019)

    MathSciNet  Google Scholar 

  24. Miao, Y., Gao, Z.: Estimation for state of charge of lithium-ion batteries by adaptive fractional-order unscented Kalman filters. J. Energy Storage 51, 104396 (2022)

    Google Scholar 

  25. Gao, Z., Liu, Y.T., Yang, C., Chen, X.J.: Unscented Kalman filter for continuous-time nonlinear fractional-order systems with process and measurement noises. Asian J. Control 22(5), 1961–1972 (2020)

    MathSciNet  Google Scholar 

  26. Ramezani, A., Safarinejadian, B., Zarei, J.: Novel hybrid robust fractional interpolatory cubature Kalman filters. J. Franklin Inst. 357(1), 704–725 (2020)

    MathSciNet  Google Scholar 

  27. Yang, C., Gao, Z., Li, X.A., Huang, X.M.: Adaptive fractional-order Kalman filters for nonlinear fractional-order systems with unknown parameters and orders. Int. J. Syst. Sci. 52(13), 2777–2797 (2021)

    Google Scholar 

  28. Zhang, X., Wu, R.C.: Modified projective synchronization of fractional-order chaotic systems with different dimensions. Acta Math. Appl. Sin. Engl. Ser. 36(2), 527–538 (2020)

    MathSciNet  Google Scholar 

  29. Kiani-B, A., Fallahi, K., Pariz, N., Leung, H.: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Commun. Nonlinear Sci. Numer. Simul. 14(3), 863–879 (2009)

    MathSciNet  Google Scholar 

  30. Ramezani, A., Safarinejadian, B., Zarei, J.: Fractional order chaotic cryptography in colored noise environment by using fractional order interpolatory cubature Kalman filter. Trans. Inst. Meas. Control. 41(11), 3206–3222 (2019)

    Google Scholar 

  31. Miao, Y., Gao, Z.: Estimation for state of charge of lithium-ion batteries by adaptive fractional-order unscented Kalman filters. J. Energy Storage 51, 104396 (2022)

  32. Zhu, Q., Xu, M.G., Liu, W.Q., Zhang, M.Q.: A state of charge estimation method for lithiumion batteries based on fractional order adaptive extended Kalman fifilter. Energy 187, 115880 (2019)

  33. Nosrati, K., Masoud, S.: Kalman filtering for discrete-time linear fractional-order singular systems. IET Control Theory Appl. 12(9), 1254–1266 (2018)

    MathSciNet  Google Scholar 

  34. Nosrati, K., Belikov, J., Tepljakov, A., Petlenkov, E.: Extended fractional singular Kalman filter. Appl. Math. Comput. 448, 127950 (2023)

    MathSciNet  Google Scholar 

  35. Gao, Z.: Cubature Kalman filters for nonlinear continuous-time fractional-order systems with uncorrelated and correlated noises. Nonlinear Dyn. 96(3), 1805–1817 (2019)

    Google Scholar 

  36. Yang, C., Gao, Z., Liu, F.H., Ma, R.C.: Extended Kalman filters for nonlinear fractional-order systems perturbed by colored noises. ISA Trans. 102, 68–80 (2019)

    Google Scholar 

  37. Sun, Y.H., Wu, X.P., Cao, J.D., Wei, Z.N., Sun, G.Q.: Fractional extended Kalman filtering for non-linear fractional system with Lévy noises. IET Control Theory Appl. 11(3), 349–358 (2017)

    MathSciNet  Google Scholar 

  38. Huang, X.M., Gao, Z., Chen, X.J.: Extended Kalman filter for linear fractional-order systems with unknown fractional-order. ICIC Expr. Lett. 14(5), 431–441 (2020)

    Google Scholar 

  39. Yang, C., Gao, Z., Miao, Y., Kan, T.: Study on the initial value problem for fractional-order cubature Kalman filters of nonlinear continuous-time fractional-order systems. Nonlinear Dyn. 105(3), 2387–2403 (2021)

    Google Scholar 

  40. Wu, G.C., Zeng, D.Q., Baleanu, D.: Fractional impulsive differential equations: exact solutions, integral equations and short memory case. Fract. Calc. Appl. Anal. 22(1), 180–192 (2019)

    MathSciNet  Google Scholar 

  41. Podlubny, I.: Fractional Differential Equation. Academic Press, New York (1999)

    Google Scholar 

  42. Caputo, M.C., Torres, D.F.M.: Duality for the left and right fractional derivatives. Signal Process. 107, 265–271 (2015)

    Google Scholar 

  43. Sierociuk, D., Dzielinski, A.D.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation. Int. J. Appl. Math. Comput. Sci. 1(16), 129–140 (2006)

    MathSciNet  Google Scholar 

  44. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Shenyang Young and Middle-Aged Scientific and Technological Innovation Talents Support Program under Grant RC210082, the Liaoning Revitalization Talents Program under Grant XLYC1807229, and the Scientific Research Fund of Liaoning Provincial Education Department, China under Grant LJC202010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Gao, Z., Chai, H. et al. State estimation for a nonlinear fractional-order system with correlated noises considering influence of initial value. Nonlinear Dyn 111, 22443–22456 (2023). https://doi.org/10.1007/s11071-023-09030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09030-4

Keywords

Navigation