Skip to main content
Log in

Observer based control for a tree-shaped network of Timoshenko beams using Lyapunov’s method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the robust output regulation of a tree-shaped network of Timoshenko beams, where disturbances and references have all the coefficients unknown and are generated from an exosystem with unknown initial values. Observer based robust controls are designed based on two active disturbance rejection controls (ADRCs) in two cases: (I) the beam system is considered under the special and known disturbances and references; (II) the beam system is considered under the unknown and arbitrary signals from an exosystem. The above ADRCs are transformed into the same robust controls, by using the observers to introduce internal model structure. For the Timoshenko beam systems, observer based tracking error feedback controls are proposed to guarantee that three transverse displacements are regulated to track prescribed references. A simulation example is provided to show the effectiveness of the robust output regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Deutscher, J.: Cooperative output regulation for a network of parabolic systems with varying parameters. Automatica 125(1), 109446 (2021)

    Article  MathSciNet  Google Scholar 

  2. Deutscher, J.: Robust output regulation by observer-based feedforward control. Int. J. Syst. Sci. 48(4), 795–804 (2017)

    Article  MathSciNet  Google Scholar 

  3. Feng, H., Guo, B., Wu, X.: Trajectory planning approach to output tracking for a 1-d wave equation. IEEE Trans. Autom. Control 65(5), 1841–1854 (2020)

    Article  MathSciNet  Google Scholar 

  4. Fu, Q., Wang, J., Gong, L., Wang, J.Y., He, W.: Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control. Trans. Nanjing Univ. Aeronaut. Astronaut. 38(2), 206–215 (2021)

    Google Scholar 

  5. Fu, Q., Wang, X.Q., Zou, Y., He, W.: A miniature video stabilization system for flapping-wing aerial vehicles. Guid. Navig. Control. 2(1), 1–22 (2022)

    Google Scholar 

  6. Guo, B.Z., Meng, T.T.: Robust error based non-collocated output tracking control for a heat equation. Automatica 114(1), 108818 (2020)

    Article  MathSciNet  Google Scholar 

  7. Guo, B.Z., Meng, T.T.: Robust output regulation for Timoshenko beam equation with two inputs and two outputs. Int. J. Robust Nonlinear Control 31(4), 1245–1269 (2021)

    Article  MathSciNet  Google Scholar 

  8. Guo, W., Jin, F.: Adaptive error feedback regulator design for 1 D heat equation. Automatica 113, 108810 (2020)

    Article  MathSciNet  Google Scholar 

  9. Han, Z.J., Xu, G.Q.: Exponential stabilisation of a simple tree-shaped network of Timoshenko beams system. Int. J. Control 83, 1485–1503 (2010)

    Article  MathSciNet  Google Scholar 

  10. Han, Z.J., Xu, G.Q.: Stabilization and Riesz basis property of two serially connected Timoshenko beams system. J. Appl. Math. Mech. 89(12), 962–980 (2009)

    MathSciNet  Google Scholar 

  11. He, W., Mu, X.X., Zhang, L., Zou, Y.: Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J. Autom. Sinica 8(1), 148–156 (2021)

    Article  MathSciNet  Google Scholar 

  12. He, W., He, X., Ge, S.: Modeling and vibration control of a coupled vessel-mooring-riser system. IEEE/ASME Trans. Mechatron. 20(6), 2832–2840 (2015)

    Article  Google Scholar 

  13. He, W., Tang, X.Y., Wang, T.T., Liu, Z.J.: Trajectory tracking control for a three-dimensional flexible wing. IEEE Trans. Cotnrol Syst. Technol. 30(5), 1–8 (2022)

    Google Scholar 

  14. Huang, H.F., He, W., Wang, J.B., Zhang, L., Fu, Q.: An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ASME Trans. Mechatron. 27, 5484–5494 (2022)

    Article  Google Scholar 

  15. Huang, J.: Nonlinear output regulation theory and application. Soc. Ind. Appl. Math. pp. 1–15 (2004)

  16. Liu, W., Guo, W., Wang, J.: Backstepping-based adaptive error feedback regulator design for one-dimensional reaction-diffusion equation. J. Math. Anal. Appl. 484(1), 123666 (2020)

    Article  MathSciNet  Google Scholar 

  17. Liu, W., Wang, J., Guo, W.: A backstepping approach to adaptive error feedback regulator design for one-dimensional linear parabolic PIDEs. J. Math. Anal. Appl. 503(2), 125310 (2021)

    Article  MathSciNet  Google Scholar 

  18. Luo, C., Wen, H., Jin, D.: Deployment of flexible space tether system with satellite attitude stabilization. Acta Astronaut. 160, 240–250 (2019)

    Article  Google Scholar 

  19. Li, Z.J., Li, X., Li, Q.J., Su, H., Kan, Z., He, W.: Human-in-the-loop control of soft exosuits using impedance learning on different terrains. IEEE Trans. Robot. 38, 2979–2993 (2022)

    Article  Google Scholar 

  20. Liu, D.Y., Chen, Y.N., Shang, Y.F., Xu, G.Q.: Stabilization of a Timoshenko beam with disturbance observer-based time varying boundary controls. Asian J. Control 20(5), 1869–1880 (2018)

    Article  MathSciNet  Google Scholar 

  21. Liu, Z.J., Han, Z.J., Zhao, Z.J., He, W.: Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Sci. China Inf. Sci. 64(5), 1–16 (2021)

    MathSciNet  Google Scholar 

  22. Meng, T., Huang, H., Fu, Q.: Robust output regulation of four strings based on coupled exosystem observers. Syst. Control Lett. 180, 105607 (2023)

    Article  MathSciNet  Google Scholar 

  23. Meng, T., Zhang, Y., Fu, Q., He, W.: Adaptive internal model control for a flexible wing with unsteady aerodynamic loads. IEEE Trans. Cybern. (2023). https://doi.org/10.1109/TCYB.2023.3278711

    Article  Google Scholar 

  24. Meng, T., Guo, B.-Z.: Observer-based robust control for N-coupled wave equations. Int. J. Robust Nonlinear Control 33(14), 8548–8569 (2023)

    Article  MathSciNet  Google Scholar 

  25. Paunonen, L.: Controller design for robust output regulation of regular linear systems. IEEE Trans. Autom. Control 61(10), 2974–2986 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ren, Y., Chen, M., Liu, J.Y.: Bilateral coordinate boundary adaptive control for a helicopter lifting system with backlash-like hysteresis. Sci. China Inf. Sci. 63(1), 1–3 (2020)

  27. Tavasoli, A.: Adaptive nonlinear boundary control of a hybrid Euler-Bernoulli beam with coupled rigid and flexible dynamics. Iran. J. Sci. Technol. Trans. Mech. Eng. 42(3), 311–315 (2018)

    Article  MathSciNet  Google Scholar 

  28. Vu, Q.P., Wang, J.M., Xu, G.Q., Yung, S.P.: Spectral analysis and system of fundamental solutions for Timoshenko beams. Appl. Math. Lett. 18(2), 127–134 (2004)

    Article  MathSciNet  Google Scholar 

  29. Wu, X., Feng, H.: Output tracking for a 1-d heat equation with non-collocated configurations. J. Franklin Inst. 357, 3299–3315 (2020)

    Article  MathSciNet  Google Scholar 

  30. Xie, Y.R., Han, Z.J., Xu, G.Q.: Stabilization of serially connected hybrid PDE-ODE system with unknown external disturbances. J. Appl. Anal. Comput. 98(4), 718–734 (2019)

    MathSciNet  Google Scholar 

  31. Yan, Q.X., Hou, S.H., Feng, D.X.: Asymptotic behavior of Timoshenko beam with dissipative boundary feedback. J. Math. Anal. Appl. 269(2), 556–577 (2002)

    Article  MathSciNet  Google Scholar 

  32. Yang, H.J., Liu, J.K.: Distributed piezoelectric vibration control for a flexible-link manipulator based on an observer in the form of partial differential equations. J. Sound Vib. 363, 77–96 (2016)

    Article  Google Scholar 

  33. Zhang, Y.M., Yan, P., Zhang, Z.: A disturbance observer-based adaptive control approach for flexure beam nano manipulators. ISA Trans. 60, 206–217 (2016)

    Article  Google Scholar 

  34. Zhang, Y.L., Zhu, M., Li, D.H., Wang, J.M.: Stabilization of two coupled wave equations with joint anti-damping and non-collocated control. Automatica 135, 109995 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Natural Science Foundation of China (Grant no.: 62103038,62173031), the China National Postdoctoral Program for Innovative Talents (Grant no.: BX2021032), the China Postdoctoral Science Foundation (Grant no.: 2020M680351), the Science, Technology & Innovation Project of Xiongan New Area (Grant no.: 2023XAGG0062) and the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities) (Grant no.: FRF-IDRY-22-029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, T., Zeng, X., Wu, X. et al. Observer based control for a tree-shaped network of Timoshenko beams using Lyapunov’s method. Nonlinear Dyn 111, 22303–22321 (2023). https://doi.org/10.1007/s11071-023-09029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09029-x

Keywords

Navigation