Skip to main content

Advertisement

Log in

Machine learning to explore the stochastic perturbations in revenue of pandemic-influenced small businesses

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The classical models of risk assessment and the forecasting tools of business revenue typically contain unknown parameters with a range of empirical values that are insufficient for making intuitive predictions. To improve the modeling and simulation approaches, it is necessary to deal with the associated data-sets, subject to several complex constraints, using smart programming tools. These constraints are responsible for the randomness, noise and perturbation, technically termed as the stochastic effects. Such stochastic processes, when incorporated with seasonality lead to the mean reverting L’evy-based Ornstein–Uhlenbeck approach. The Ornstein–Uhlenbeck modeling approach is used here for the assessment of the revenue. Regression learner models of machine learning are developed to explore impact of the change in temperature on pandemic thresholds and with this, the change in revenue. The current research strategy can prove to support the investors in their future investment planning and decisions and to forecast the risks and the fate of small and individual-based businesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data generated during simulations, is generated based on the optimized parametric values and literature review as acknowledged.

References

  1. Coleman, M., Marks, H.: Qualitative and quantitative risk assessment. Food Control 10(4–5), 289–297 (1999)

    Article  Google Scholar 

  2. Ho, K., Leroi, E., Roberds, B.: Quantitative risk assessment: application, myths and future direction. In: ISRM International Symposium, OnePetro, (2000).

  3. Apostolakis, G.E.: How useful is quantitative risk assessment? Risk. Anal. Int. J. 24(3), 515–520 (2004)

    Article  Google Scholar 

  4. Van Ryzin, J.: Quantitative risk assessment. J. Occup. Med. 22, 321–326 (1980)

    Article  Google Scholar 

  5. Kaplan, S., Garrick, B.J.: On the quantitative definition of risk. Risk Anal. 1(1), 11–27 (1981)

    Article  Google Scholar 

  6. Mutshinda, C.M., Antai, I., O’Hara, R.B.: A probabilistic approach to exposure risk assessment. Stoch. Env. Res. Risk Assess. 22(4), 441–449 (2008)

    Article  MathSciNet  Google Scholar 

  7. Paltrinieri, N., Comfort, L., Reniers, G.: Learning about risk: machine learning for risk assessment. Saf. Sci. 118, 475–486 (2019)

    Article  Google Scholar 

  8. Tuan, B.A., Pho, K.-H., Pan, S.-H., Wong, W.-K.: Applications in sciences in the prevention of covid-19. Adv. Decis. Sci. 26(4), 1–16 (2022)

    Google Scholar 

  9. Coppendale, J.: Manage risk in product and process development and avoid unpleasant surprises. Eng. Manag. J. 5(1), 35–38 (1995)

    Google Scholar 

  10. Liu, H.-C., Liu, L., Liu, N.: Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Syst. Appl. 40(2), 828–838 (2013)

    Article  Google Scholar 

  11. Bartik, A.W., Bertrand, M., Cullen, Z., Glaeser, E.L., Luca, M., Stanton, C.: The impact of covid-19 on small business outcomes and expectations. Proc. Natl. Acad. Sci. 117(30), 17656–17666 (2020)

    Article  Google Scholar 

  12. Yu, Z., Abdel-Salam, A.-S.G., Sohail, A., Alam, F.: Forecasting the impact of environmental stresses on the frequent waves of covid19. Nonlinear Dyn. 106(2), 1509–1523 (2021)

    Article  Google Scholar 

  13. Yin, M.-Z., Zhu, Q.-W., Lü, X.: Parameter estimation of the incubation period of covid-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106(2), 1347–1358 (2021)

    Article  Google Scholar 

  14. Tenreiro Machado, J., Ma, J.: “Nonlinear dynamics of covid-19 pandemic: modeling, control, and future perspectives. Nonlinear Dyn. 101(3), 1525–1526 (2020)

    Article  Google Scholar 

  15. Lü, X., Hui, H.-W., Liu, F.-F., Bai, Y.-L.: Stability and optimal control strategies for a novel epidemic model of covid-19. Nonlinear Dyn. 106(2), 1491–1507 (2021)

    Article  Google Scholar 

  16. Song, Z., Giuriato, M., Lillehaugen, T., et al.: Economic and clinical impact of covid-19 on provider practices in Massachusetts. NEJM Catalyst Innov. Care Deliv. 1(5), (2020)

  17. Ferneini, E.M.: The financial impact of covid-19 on our practice. J. Oral Maxillofac. Surg. 78(7), 1047–1048 (2020)

    Article  Google Scholar 

  18. Liang, Z., Yuen, K.C., Guo, J.: Optimal proportional reinsurance and investment in a stock market with Ornstein–Uhlenbeck process. Insur. Math. Econ. 49(2), 207–215 (2011)

    Article  MathSciNet  Google Scholar 

  19. Chaiyapo, N., Phewchean, N.: An application of Ornstein-Uhlenbeck process to commodity pricing in Thailand. Adv. Diff. Equ. 2017(1), 1–10 (2017)

    Article  MathSciNet  Google Scholar 

  20. Janczura, J., OrzeŃ, S., WyŃomańska, A.: Subordinated α-stable Ornstein–Uhlenbeck process as a tool for financial data description. Physica A 390(23–24), 4379–4387 (2011)

    Article  Google Scholar 

  21. Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5(2), 177–188 (1977)

    Article  Google Scholar 

  22. Moore, P.G., Moore, P.G.: The business of risk. Cambridge University Press (1983)

    Book  Google Scholar 

  23. Rasmussen, N.C.: The application of probabilistic risk assessment techniques to energy technologies. Ann. Rev. Energy 6(1), 123–138 (1981)

    Article  MathSciNet  Google Scholar 

  24. Nobile, A., Ricciardi, L., Sacerdote, L.: Exponential trends of Ornstein–Uhlenbeck first-passage-time densities. J. Appl. Probab. 22(2), 360–369 (1985)

    Article  MathSciNet  Google Scholar 

  25. Rounak, A., Gupta, S.: Stochastic p-bifurcation in a nonlinear impact oscillator with soft barrier under Ornstein–Uhlenbeck process. Nonlinear Dyn. 99(4), 2657–2674 (2020)

    Article  Google Scholar 

  26. Ricciardi, L.M., Sato, S.: First-passage-time density and moments of the Ornstein-Uhlenbeck process. J. Appl. Probab. 25(1), 43–57 (1988)

    Article  MathSciNet  Google Scholar 

  27. Lindner, A., Maller, R.: Lévy integrals and the stationarity of generalised Ornstein–Uhlenbeck processes. Stochast. Process. Appl. 115(10), 1701–1722 (2005)

    Article  Google Scholar 

  28. Fricker, T.E., Oakley, J.E., Urban, N.M.: Multivariate gaussian process emulators with nonseparable covariance structures. Technometrics 55(1), 47–56 (2013)

    Article  MathSciNet  Google Scholar 

  29. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. Elsevier (2014)

    Google Scholar 

  30. Benth, F.E., Šaltytė-Benth, J.: Stochastic modelling of temperature variations with a view towards weather derivatives. Appl. Math. Financ. 12(1), 53–85 (2005)

    Article  Google Scholar 

  31. Lieth, H.: Phenology and seasonality modeling. Springer Science & Business Media (2013)

    Google Scholar 

  32. Li, P.: Pricing weather derivatives with partial differential equations of the ornstein–uhlenbeck process. Comput. Math. Appl. 75(3), 1044–1059 (2018)

    Article  MathSciNet  Google Scholar 

  33. Gupta, A.: Risk management and simulation. CRC Press (2013)

    Google Scholar 

  34. Yu, Z., Sohail, A., Nofal, T.A., Tavares, J.M.R.: Explainability of neural network clustering in interpreting the covid-19 emergency data. Fractals 30, 2240122 (2022)

    Article  Google Scholar 

  35. Yu, Z., Arif, R., Fahmy, M.A., Sohail, A.: Self organizing maps for the parametric analysis of covid-19 seirs delayed model. Chaos Solitons Fract. 150, 111202 (2021)

    Article  MathSciNet  Google Scholar 

  36. Yu, Z., Sohail, A., Jamil, M., Beg, O., Tavares, J.M.R.: Hybrid algorithm for the classification of fractal designs and images. Fractals (2022). https://doi.org/10.1142/S0218348X23400030

    Article  Google Scholar 

  37. Sohail, A., Yu, Z., Arif, R., Nutini, A., Nofal, T.A.: Piecewise differentiation of the fractional order car-t cells-sars-2 virus model. Res. Phys. 33, 105046 (2022)

    Google Scholar 

  38. Yu, Z., Gao, H., Cong, X., Naiqi, W., Song, H.H.: A survey on cyber-physical systems security. IEEE Internet Things J. (2023). https://doi.org/10.1109/JIOT.2023.3289625

    Article  Google Scholar 

  39. Nishtar, S., Boerma, T., Amjad, S., Alam, A.Y., Khalid, F., Haq, I., Mirza, Y.A.: Pakistan’s health system: performance and prospects after the 18th constitutional amendment. Lancet 381(9884), 2193–2206 (2013)

    Article  Google Scholar 

  40. Patil, A.V., Somasundaram, K., Goyal, R.: Current health scenario in rural india. Aust. J. Rural Health 10(2), 129–135 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the data repositories: CSSEGISandData-COVID-19 and UNEP Environmental Data Explorer.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Yu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Sohail, A. Machine learning to explore the stochastic perturbations in revenue of pandemic-influenced small businesses. Nonlinear Dyn 112, 1549–1558 (2024). https://doi.org/10.1007/s11071-023-09011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09011-7

Keywords

Navigation