Skip to main content

Advertisement

Log in

Mean field derivation and validity verification of neural networks coupled by Izhikevich neurons

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A significant aim of neuroscience and nonlinear dynamics is to understand how brain function emerges from the collective dynamics of neuronal networks. However, theoretical analysis and macroscopic understanding of neural networks are difficult because of their high dimension and computational complexity. Therefore, the concept of the mean field is proposed. Nevertheless, existing mean field models still need to improve. For example, the mean field model of neural networks composed of one-dimensional quadratic integral-and-fire (IF) neurons lacks adaptive variables and cannot simulate the necessary dynamic behavior of burst firing. The mean field of the neural network composed of the two-dimensional IF neurons lacks the expression related to membrane potential, and membrane potential is the critical variable of neural dynamics. In order to solve the above problems, this paper proposes a more accurate and comprehensive mean field model (a three-dimensional nonsmooth differential equation composed of mean membrane potential, mean adaptive variable, and mean firing rate) by using the conservation law of the number of neurons, which can not only analyze burst firing but also have expressions related to membrane potential. Moreover, the agreement degree between the original model and the derived mean field model, and the validity of this mean field model are verified by comparing the two models through numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sun, J., Wang, Y., Liu, P., et al.: Memristor-based neural network circuit with multimode generalization and differentiation on pavlov associative memory. IEEE Transact. Cybern. 53(5), 3351–3362 (2023). https://doi.org/10.1109/TCYB.2022.3200751

    Article  Google Scholar 

  2. Sun, J., Wang, Y., Liu, P., et al.: Memristor-based circuit design of pad emotional space and its application in mood congruity. IEEE Internet Things J. (2023). https://doi.org/10.1109/JIOT.2023.3267778

    Article  Google Scholar 

  3. Ma, T., Mou, J., Yan, H., et al.: A new class of Hopfield neural network with double memristive synapses and its DSP implementation. Eur. Phys. J. Plus 137(10), 1135 (2022). https://doi.org/10.1140/epjp/s13360-022-03353-8

    Article  Google Scholar 

  4. Dou, G., Zhao, K., Guo, M., et al.: Memristor-based LSTM network for text classification. Fractals (2023). https://doi.org/10.1142/S0218348X23400406

    Article  Google Scholar 

  5. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972). https://doi.org/10.1016/S0006-3495(72)86068-5

    Article  Google Scholar 

  6. Dayan, P., Abbott, L.F.: Theoretical neuroscience. (Vol. 806), (2001)

  7. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press (2002)

  8. Ermentrout, B., Terman, D.H.: Mathematical foundations of neuroscience. New York: springer (2010). https://doi.org/10.1007/978-0-387-87708-2

  9. Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6(1), 2 (2016). https://doi.org/10.1186/s13408-015-0033-6

    Article  MathSciNet  Google Scholar 

  10. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45(3), 033001 (2012)

    Article  MathSciNet  Google Scholar 

  11. Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93(2), 91–108 (2005). https://doi.org/10.1007/s00422-005-0574-y

    Article  MathSciNet  Google Scholar 

  12. Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61(4), 353 (1998)

    Article  Google Scholar 

  13. Coombes, Stephen, et al., eds.: Neural fields: theory and applications. Springer (2014)

  14. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977). https://doi.org/10.1007/BF00337259

    Article  MathSciNet  Google Scholar 

  15. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984). https://doi.org/10.1073/pnas.81.10.3088

    Article  Google Scholar 

  16. Mongillo, G., Barak, O., Tsodyks, M.: Synaptic theory of working memory. Science 319(5869), 1543–1546 (2008). https://doi.org/10.1126/science.1150769

    Article  Google Scholar 

  17. Ben-Yishai, R., Bar-Or, R.L., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. 92(9), 3844–3848 (1995). https://doi.org/10.1073/pnas.92.9.3844

    Article  Google Scholar 

  18. Koch, C., Segev, I. eds: Methods in neuronal modeling: from ions to networks. MIT press, (1998)

  19. Moreno-Bote, R., Rinzel, J., Rubin, N.: Noise-induced alternations in an attractor network model of perceptual bistability. J. Neurophysiol. 98(3), 1125–1139 (2007). https://doi.org/10.1152/jn.00116.2007

    Article  Google Scholar 

  20. Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16(6), 2112–2126 (1996). https://doi.org/10.1523/JNEUROSCI.16-06-02112.1996

    Article  Google Scholar 

  21. Wong, K.F., Wang, X.J.: A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26(4), 1314–1328 (2006). https://doi.org/10.1523/JNEUROSCI.3733-05.2006

    Article  Google Scholar 

  22. Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., et al.: Theoretical predictions for spatial covariance of the electroencephalographic signal during the anesthetic-induced phase transition: increased correlation length and emergence of spatial self-organization. Phys. Rev. E 68(2), 021902 (2003). https://doi.org/10.1103/PhysRevE.68.021902

    Article  Google Scholar 

  23. Ermentrout, B., Terman, D.H.: Mathematical foundations of neuroscience. New York: springer (2010). https://doi.org/10.1007/978-0-387-87708-2

  24. Gerstner, W., Kistler, W.M., Naud, R., et al.: Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press (2014)

  25. Cowan, J.: A personal account of the development of the field theory of large-scale brain activity from 1945 onward. Neural fields. Springer, Berlin, Heidelberg, 47-96 (2014). https://doi.org/10.1007/978-3-642-54593-1_2

  26. Coombes, S., Potthast, R.: Tutorial on neural field theory. Neural fields. Springer, Berlin, Heidelberg, 1-43 (2014). https://doi.org/10.1007/978-3-642-54593-1_1

  27. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952). https://doi.org/10.1007/BF02459568

    Article  Google Scholar 

  28. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J . 35(1), 193–213 (1981). https://doi.org/10.1016/S0006-3495(81)84782-0

    Article  Google Scholar 

  29. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46(2), 233–253 (1986). https://doi.org/10.1137/0146017

    Article  MathSciNet  Google Scholar 

  30. Izhikevich, E.M.: Resonate-and-fire neurons. Neural Netw. 14(6–7), 883–894 (2001)

    Article  Google Scholar 

  31. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440

    Article  MathSciNet  Google Scholar 

  32. Touboul, J.: Bifurcation analysis of a general class of nonlinear integrate-and-fire neurons. SIAM J. Appl. Math. 68(4), 1045–1079 (2008). https://doi.org/10.1137/070687268

    Article  MathSciNet  Google Scholar 

  33. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005). https://doi.org/10.1152/jn.00686.2005

    Article  Google Scholar 

  34. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4), 335–347 (2008). https://doi.org/10.1007/s00422-008-0264-7

    Article  MathSciNet  Google Scholar 

  35. Barranca, V.J., Johnson, D.C., Moyher, J.L., et al.: Dynamics of the exponential integrate-and-fire model with slow currents and adaptation. J. Comput. Neurosci. 37(1), 161–180 (2014). https://doi.org/10.1007/s10827-013-0494-0

    Article  MathSciNet  Google Scholar 

  36. Montbrió, E., Pazó, D., Roxin, A.: Macroscopic description for networks of spiking neurons. Phys. Rev. X 5(2), 021028 (2015). https://doi.org/10.1103/PhysRevX.5.021028

    Article  Google Scholar 

  37. Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos: An Interdiscip. J. Nonlinear Sci. 18(3), 037113 (2008). https://doi.org/10.1063/1.2930766

    Article  MathSciNet  Google Scholar 

  38. Devalle, F., Montbrió, E., Pazó, D.: Dynamics of a large system of spiking neurons with synaptic delay. Phys. Rev. E 98(4), 042214 (2018). https://doi.org/10.1103/PhysRevE.98.042214

    Article  MathSciNet  Google Scholar 

  39. Pietras, B., Devalle, F., Roxin, A., et al.: Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Phys. Rev. E 100(4), 042412 (2019). https://doi.org/10.1103/PhysRevE.100.042412

  40. Devalle, F., Roxin, A., Montbrió, E.: Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Comput. Biol. 13(12), e1005881 (2017). https://doi.org/10.1371/journal.pcbi.1005881

  41. Nicola, W., Campbell, S.A.: Bifurcations of large networks of two-dimensional integrate and fire neurons. J. Comput. Neurosci. 35(1), 87–108 (2013). https://doi.org/10.1007/s10827-013-0442-z

    Article  MathSciNet  Google Scholar 

  42. Nicola, W., Campbell, S.A.: Nonsmooth bifurcations of mean field systems of two-dimensional integrate and fire neurons. SIAM J. Appl. Dyn. Syst. 15(1), 391–439 (2016). https://doi.org/10.1137/140985846

    Article  MathSciNet  Google Scholar 

  43. Ly, C., Tranchina, D.: Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural Comput. 19(8), 2032–2092 (2007). https://doi.org/10.1162/neco.2007.19.8.2032

    Article  MathSciNet  Google Scholar 

  44. Xie, Y., Xu, Y., Ma, J.: Desynchronization and energy diversity between neurons. Nonlinear Dyn. 111(12), 11521–11541 (2023). https://doi.org/10.1007/s11071-023-08468-w

    Article  Google Scholar 

  45. Hou, B., Zhou, P., Ren, G., et al.: Energy flow controls synchronization in a network coupled with memristive synapses. Eur. Phys. J. Plus 138(3), 293 (2023). https://doi.org/10.1140/epjp/s13360-023-03900-x

    Article  Google Scholar 

  46. Yang, F., Wang, Y., Ma, J.: An adaptive synchronization approach in a network composed of four neurons with energy diversity. Indian J. Phys. 97(7), 2125–2137 (2023). https://doi.org/10.1007/s12648-022-02562-2

    Article  Google Scholar 

Download references

Funding

Funding was received from the National Natural Science Foundation of China (No.12262002, No.11872154), Natural Science Foundation of Guangxi Province (2021GXNSFAA196076, 2021GXNSFFA196006), and The Guangxi Science and Technology base and Talent Project (Grant No.AD22080047).

Author information

Authors and Affiliations

Authors

Contributions

Jieqiong Xu conceived, designed, and performed the study, analyzed the data, reviewed drafts of the paper, and approved the final draft. Junjie Wang analyzed the data and authored or reviewed drafts of the paper. Qixiang Xu, Jie Fang, and Jimin Qiu analyzed the data and reviewed drafts of the paper.

Corresponding author

Correspondence to Junjie Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wang, J., Xu, Q. et al. Mean field derivation and validity verification of neural networks coupled by Izhikevich neurons. Nonlinear Dyn 111, 22567–22593 (2023). https://doi.org/10.1007/s11071-023-09009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09009-1

Keywords

Navigation