Skip to main content
Log in

Generalized adaptive gain sliding mode observer for uncertain nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new generalized adaptive gain sliding mode observer (GAGSMO) for estimating the unavailable states of a class of multi-input multi-output uncertain nonlinear systems. To further improve the estimation performance of conventional sliding mode observer, the observer gains of GAGSMO are designed for the first time as the generalized bounded positive functions of the available output errors and the upper bounds of disturbance terms. Due to the features of the designed observer gains, the GAGSMO has stronger robustness than the conventional sliding mode observer in the presence of system uncertainties and nonlinearities. The finite-time error convergence of GAGSMO is proved by the Lyapunov stability theorem in conjunction with the introduced mapping functions. Then, by catching sight of the inherent feature of sliding motion, a recursive mechanism based only on available estimation information is formulated to update the designed observer gains online in the sliding mode stage. With the recursive mechanism, the chattering level of GAGSMO is minimized, and the estimation accuracy of GAGSMO is further improved. The effectiveness and excellent performance of the proposed GAGSMO are illustrated with two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Alvaro-Mendoza, E., Morales, J.D.L., Hamida, M.A., Ghanes, M.: Angular position estimation error extraction for speed and angular position estimation of IPMSM using a parameter-free adaptive observer. J. Frankl. Inst. 359(13), 7140–7164 (2022)

    MathSciNet  Google Scholar 

  2. Dong, Z., Li, J., Li, B., Guo, Z., Huang, X., Zhang, Z.: Proportional-integral extended state observer for monitoring nuclear reactors. IEEE Trans. Nucl. Sci. 68(6), 1207–1221 (2021)

    Google Scholar 

  3. Su, Q., Li, S., Gao, Y., Huang, X., Li, J.: Observer-based detection and reconstruction of dynamic load altering attack in smart grid. J. Franklin Inst. 358(7), 4013–4027 (2021)

    MathSciNet  Google Scholar 

  4. Xi, X., Zhao, J., Liu, T., Yan, L.: Distributed-observer-based fault diagnosis and fault-tolerant control for time-varying discrete interconnected systems. J. Ambient. Intell. Humaniz. Comput. 11(2), 459–482 (2020)

    Google Scholar 

  5. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circuits Signal Process. 102(3), 479–490 (2020)

    Google Scholar 

  6. Harzelli, I., Menacer, A., Ameid, T.: A fault monitoring approach using model-based and neural network techniques applied to input–output feedback linearization control induction motor. J. Ambient Intell. and Humaniz. Computing. 11(6), 2519–2538 (2020)

    Google Scholar 

  7. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control 24(6), 993–1015 (2014)

    MathSciNet  Google Scholar 

  8. Varatharajan, A., Pellegrino, G., Armando, E., Hinkkanen, M.: Sensorless synchronous motor drives: a review of flux observer-based position estimation schemes using the projection vector framework. IEEE Trans. Power Electron. 36(7), 8171–8180 (2021)

    Google Scholar 

  9. Nazemi, H., Joseph, A., Park, J., Emadi, A.: Advanced micro-and nano-gas sensor technology: a review. Sensors 19(6), 1285 (2019)

    Google Scholar 

  10. Utkin, V., Poznyak, A., Orlov, Y., Polyakov, A.: Conventional and high order sliding mode control. J. Frankl. Inst. 357(15), 10244–10261 (2020)

    MathSciNet  Google Scholar 

  11. Kanungo, A., Mittal, M., Dewan, L., Mittal, V., Gupta, V.: Speed control of DC motor with MRPID controller in the presence of noise. Wirel. Pers. Commun. 124(1), 893–907 (2022)

    Google Scholar 

  12. Kim, T., Shim, H., & Cho, D.D.: Distributed Luenberger observer design. In: 2016 IEEE 55th Conference on Decision and Control (CDC). 6928–6933 (2016)

  13. Welch, G.F.: Kalman filter. Computer Vision: A Reference Guide. 1–3 (2020)

  14. Ribeiro, A.H., Tiels, K., Umenberger, J., Schön, T.B., Aguirre, L.A.: On the smoothness of nonlinear system identification. Automatica 121, 109158 (2020)

    MathSciNet  Google Scholar 

  15. Gupta, V., Mittal, M., Mittal, V.: R-peak detection using chaos analysis in standard and real time ECG databases. IRBM. 40(6), 341–354 (2019)

    Google Scholar 

  16. Kang, W., Krener, A.J., Xiao, M., Xu, L.: A survey of observers for nonlinear dynamical systems. In Data Assim. Atmos., Ocean. Hydrol. Appl. II, 1–25 (2013)

    Google Scholar 

  17. Khan, A., Xie, W., Zhang, B., Liu, L.W.: A survey of interval observers design methods and implementation for uncertain systems. J. Frankl. Inst. 358(6), 3077–3126 (2021)

    MathSciNet  Google Scholar 

  18. Yi, L., Sun, T., Yu, W., Xu, X., Zhang, G., Jiang, G.: Induction motor fault detection by a new sliding mode observer based on backstepping. J. Ambient. Intell. Humaniz. Comput. 1–14, 12061–12074 (2022)

    Google Scholar 

  19. Falehi Ali, D.: Optimal robust disturbance observer based sliding mode controller using multi-objective grasshopper optimization algorithm to enhance power system stability. J. Ambient. Intell. Humaniz. Comput. 11, 5045–5063 (2020)

    Google Scholar 

  20. Slotine, J.J.E., Hedrick, J.K., & Misawa, E.A.: Nonlinear state estimation using sliding observers. In: 1986 25th IEEE Conference on Decision and Control. pp. 332–339 (1986)

  21. Slotine, J.J.E., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. J. Dyn. Syst. Meas. Contr. 109(3), 245–252 (1987)

    Google Scholar 

  22. Spurgeon, S.K.: Sliding mode observers: a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)

    MathSciNet  Google Scholar 

  23. Alvarado-Santos, E., Mata-Machuca, J.L., López-Pérez, P.A., Garrido-Moctezuma, R.A., Pérez-Guevara, F., Aguilar-López, R.: Comparative analysis of a family of sliding mode observers under real-time conditions for the monitoring in the bioethanol production. Fermentation 8(446), 1–19 (2022)

    Google Scholar 

  24. Sui, X., He, S., Stroe, D.I., Huang, X., Meng, J., and Teodorescu, R.: A review of sliding mode observers based on equivalent circuit model for battery SoC estimation. In: 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE. (2019)

  25. Zhang, D., Man, Z., Wang, H., Zheng, J., Cao, Z., & Wang, S.: A new extended sliding mode observer for second-order linear systems. In: 2021 International Conference on Advanced Mechatronic Systems (ICAMechS). IEEE. pp. 231–235 (2021)

  26. Wong, Y. W., Wang, P., Man, Z., Han, Q. L., Jin, J., & Zheng, J.: On supervised learning of sliding observer. In: 2017 11th Asian Control Conference (ASCC). IEEE. pp. 73–77 (2017)

  27. Wong, Y.W., Man, Z., Zheng, J., Han, Q.L., & Jin, J.: A new approach to sliding observer design and stability for linear system. In: 2018 15th International Workshop on Variable Structure Systems (VSS). IEEE. pp. 85–89 (2018)

  28. Ríos, H., Efimov, D., Perruquetti, W.: An adaptive sliding-mode observer for a class of uncertain nonlinear systems. Int. J. Adapt. Control Signal Process. 32(3), 511–527 (2018)

    MathSciNet  Google Scholar 

  29. Mohamed, M., Yan, X.G., Mao, Z., et al.: Adaptive sliding mode observer for nonlinear interconnected systems with time varying parameters. Asian J. Control 21(1), 405–414 (2019)

    MathSciNet  Google Scholar 

  30. Franco, R., Ríos, H., Efimov, D., Perruquetti, W.: Adaptive estimation for uncertain nonlinear systems with measurement noise: a sliding-mode observer approach. Int. J. Robust Nonlinear Control 31, 3809–3826 (2021)

    MathSciNet  Google Scholar 

  31. Gp, A., Ss, B., Mt, B.: A novel adaptive-gain technique for high-order sliding-mode observers with application to electro-hydraulic systems—sciencedirect. Mech. Syst. Signal Process. 144, 1–15 (2020)

    Google Scholar 

  32. Xu, W., Qu, S., Zhao, L., Zhang, H.: An improved adaptive sliding mode observer for middle- and high-speed rotor tracking. IEEE Trans. Power Electron. 36(1), 1043–1053 (2021)

    Google Scholar 

  33. Liu, J., Laghrouche, S., Harmouche, M., Wack, M.: Adaptive-gain second-order sliding mode observer design for switching power converters. Control. Eng. Pract. 30, 124–131 (2014)

    Google Scholar 

  34. Gholami, A., Markazi, A.H.: A new adaptive fuzzy sliding mode observer for a class of MIMO nonlinear systems. Nonlinear Dyn. 70(3), 2095–2105 (2012)

    MathSciNet  Google Scholar 

  35. Ye, S.: Fuzzy sliding mode observer with dual SOGI-FLL in sensorless control of PMSM drives. ISA Trans. 85, 161–176 (2019)

    Google Scholar 

  36. Chen, X., Shen, W., Dai, M., Cao, Z., Jin, J., Kapoor, A.: Robust adaptive sliding-mode observer using RBF neural network for lithium-ion battery state of charge estimation in electric vehicles. IEEE Trans. Veh. Technol. 65(4), 1936–1947 (2015)

    Google Scholar 

  37. Sharafian, A., Sharifi, A., Zhang, W.: Fractional sliding mode based on RBF neural network observer: application to HIV infection mathematical model. Comput. Math. Appl. 79(11), 3179–3188 (2020)

    MathSciNet  Google Scholar 

  38. Wan, S., Li, X., Su, W., Yuan, J., Hong, J.: Active chatter suppression for milling process with sliding mode control and electromagnetic actuator. Mech. Syst. Signal Process. 136, 106528 (2020)

    Google Scholar 

  39. Xu, W., Qu, S., Zhao, L., Zhang, H.: An improved adaptive sliding mode observer for middle-and high-speed rotor tracking. IEEE Trans. Power Electron. 36(1), 1043–1053 (2020)

    Google Scholar 

  40. Shao, K., Zheng, J., Wang, H., Wang, X., Liang, B.: Leakage-type adaptive state and disturbance observers for uncertain nonlinear systems. Nonlinear Dyn. 105(3), 2299–2311 (2021)

    Google Scholar 

  41. Wu, S., Zhang, J., Chai, B.: Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM. ISA Trans. 92, 155–165 (2019)

    Google Scholar 

  42. Ferreira de Loza, A., Fridman, L., Aguilar, L.T., Iriarte, R.: High-order sliding-mode observer–based input–output linearization. Int. J. Robust Nonlinear Control 29(10), 3183–3199 (2019)

    MathSciNet  Google Scholar 

  43. Wang, B., Shao, Y., Yu, Y., Dong, Q., Yun, Z., Xu, D.: High-order terminal sliding-mode observer for chattering suppression and finite-time convergence in sensorless SPMSM drives. IEEE Trans. Power Electron. 36(10), 11910–11920 (2021)

    Google Scholar 

  44. Shen, Q., Jiang, B., Cocquempot, V.: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2013)

    Google Scholar 

  45. Trefethen, L.N.: Approximation theory and approximation practice extended edition. Soc. Ind. Appl. Math. (2019). https://doi.org/10.1137/1.9781611975949.bm

    Article  Google Scholar 

  46. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wirel. Pers. Commun. 118(4), 3615–3646 (2021)

    Google Scholar 

  47. Munmuangsaen, B., Srisuchinwong, B.: A hidden chaotic attractor in the classical Lorenz system. Chaos Solitons Fract. 107, 61–66 (2018)

    MathSciNet  Google Scholar 

  48. Gupta, V., Mittal, M., Mittal, V.: Performance evaluation of various pre-processing techniques for R-peak detection in ECG signal. IETE J. Res. 68, 1–16 (2020)

    Google Scholar 

  49. Shao, K., Zheng, J., Huang, K., Wang, H., Man, Z., Fu, M.: Finite-time control of a linear motor positioner using adaptive recursive terminal sliding mode. IEEE Trans. Ind. Electron. 67(8), 6659–6668 (2019)

    Google Scholar 

  50. Chen, X., Shen, W., Cao, Z., Kapoor, A.: Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model. Comput. Chem. Eng. 64, 114–123 (2014)

    Google Scholar 

  51. Nateghi, S., Shtessel, Y., Edwards, C.: Resilient control of cyber-physical systems under sensor and actuator attacks driven by adaptive sliding mode observer. Int. J. Robust Nonlinear Control 31(15), 7425–7443 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Key Research and Development Program of Anhui Province (No. 202104a05020035) and the State Scholarship Fund of China Scholarship Council (No. 201806690018). The authors would like to thank the editor-in-chief, the associate editor, and the anonymous reviewers for their invaluable comments to improve this work.

Funding

Anhui Provincial Key Research and Development Plan, 202104a05020035, Huifang Kong.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design. The first draft of the manuscript was written by XZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaoxue Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Kong, H. & Man, Z. Generalized adaptive gain sliding mode observer for uncertain nonlinear systems. Nonlinear Dyn 111, 22237–22253 (2023). https://doi.org/10.1007/s11071-023-09000-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09000-w

Keywords

Navigation