Skip to main content
Log in

Recent advances in correlation and integration between vibration control, energy harvesting and monitoring

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Traditional structures adopt a split design with vibration control, energy harvesting and monitoring, which is difficult to meet the needs of technological development. The development of new structure from a single function to a multifunctional integration structure requires that the structure not only has the characteristics of low-frequency vibration control and energy harvesting, but also takes into account functions such as sensing, fault diagnosis and health monitoring. Given the continuously growing trend of multifunctional integration research, this paper presents the latest review on multifunctional integration of nonlinear vibration control, energy harvesting and monitoring. This is an interdisciplinary topic related to structural dynamics, mechanical design and power electronics, which has great prospects in various potential applications. The nonlinear design of new multifunctional integration structure is an essential step in the development of vibration control and energy harvesting, and is one of the most effective technical means to improve performance in low-frequency excitation environments. Therefore, the main implementation methods of nonlinear vibration control are discussed in detail. Subsequently, different strategies for nonlinear vibration energy harvesting and the challenges faced by wireless sensor network monitoring are described. On this basis, the research status, engineering applications and research trends of multifunctional integration structure are introduced in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dalela, S., Balaji, P.S., Jena, D.P.: A review on application of mechanical metamaterials for vibration control. Mech. Adv. Mater. Struct. 29(22), 3237–3262 (2022)

    Google Scholar 

  2. Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Wu, Z.Y., Zhang, W.M.: Bio-inspired vibration isolation: methodology and design. Appl. Mech. Rev. 73(2), 020801 (2021)

    Google Scholar 

  3. Ji, J.C., Luo, Q., Ye, K.: Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal Process. 161, 107945 (2021)

    Google Scholar 

  4. Huang, X., Yang, B.: Towards novel energy shunt inspired vibration suppression techniques: principles, designs and applications. Mech. Syst. Signal Process. 182, 109496 (2023)

    Google Scholar 

  5. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Priya, S., Inman, D.J.: Energy Harvesting Technologies. Springer, New York (2009)

    Google Scholar 

  7. Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017)

    MathSciNet  Google Scholar 

  8. Zhou, S., Lallart, M., Erturk, A.: Multistable vibration energy harvesters: principle, progress, and perspectives. J. Sound Vib. 528, 116886 (2022)

    Google Scholar 

  9. Newell, D., Duffy, M.: Review of power conversion and energy management for low-power, low-voltage energy harvesting powered wireless sensors. IEEE Trans. Power Electron. 34(10), 9794–9805 (2019)

    Google Scholar 

  10. Chen, L.Q., Fan, Y.: Internal resonance vibration-based energy harvesting. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08464-0

    Article  Google Scholar 

  11. Yang, T., Zhou, S., Fang, S., Qin, W., Inman, D.J.: Nonlinear vibration energy harvesting and vibration suppression technologies: designs, analysis, and applications. Appl. Phys. Rev. 8(3), 031317 (2021)

    Google Scholar 

  12. Mofidian, S.M., Bardaweel, H.: A dual-purpose vibration isolator energy harvester: experiment and model. Mech. Syst. Signal Process. 118, 360–376 (2019)

    Google Scholar 

  13. Cai, Q., Zhu, S.: The nexus between vibration-based energy harvesting and structural vibration control: a comprehensive review. Renew. Sustain. Energy Rev. 155, 111920 (2022)

    Google Scholar 

  14. Wang, Z., Zhang, Q., Zhang, K., Hu, G.: Tunable digital metamaterial for broadband vibration isolation at low frequency. Adv. Mater. 28(44), 9857–9861 (2016)

    Google Scholar 

  15. Yang, T., Cao, Q.: Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources. Int. J. Mech. Sci. 156, 123–136 (2019)

    Google Scholar 

  16. Wang, C., Lai, S.K., Wang, J.M., Feng, J.J., Ni, Y.Q.: An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Appl. Energy 291, 116825 (2021)

    Google Scholar 

  17. Ahmadabadi, Z.N., Khadem, S.E.: Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J. Sound Vib. 333(19), 4444–4457 (2014)

    Google Scholar 

  18. Xu, K.F., Zhang, Y.W., Zang, J., Niu, M.Q., Chen, L.Q.: Integration of vibration control and energy harvesting for whole-spacecraft: experiments and theory. Mech. Syst. Signal Process. 161, 107956 (2021)

    Google Scholar 

  19. Zhang, Y.W., Su, C., Ni, Z.Y., Zang, J., Chen, L.Q.: A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Compos. Struct. 221, 110875 (2019)

    Google Scholar 

  20. Zhang, Y., Cao, Q.: The recent advances for an archetypal smooth and discontinuous oscillator. Int. J. Mech. Sci. 214, 106904 (2022)

    Google Scholar 

  21. Gatti, G.: Optimizing elastic potential energy via geometric nonlinear stiffness. Commun. Nonlinear Sci. Numer. Simul. 103, 106035 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Jing, X., Chai, Y., Chao, X., Bian, J.: In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mech. Syst. Signal Process. 170, 108267 (2022)

    Google Scholar 

  23. Zhang, Y., Cao, Q., Huang, W.: Bursting oscillations in an isolation system with quasi-zero stiffness. Mech. Syst. Signal Process. 161, 107916 (2021)

    Google Scholar 

  24. Zhu, G., Cao, Q., Chen, Y.: An archetypal zero-or quasi-zero-stiffness model with three degrees of freedom based upon an inverse method. Nonlinear Dyn. 111(3), 2029–2057 (2023)

    Google Scholar 

  25. Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)

    Google Scholar 

  26. Margielewicz, J., Gaska, D., Litak, G., Wolszczak, P., Zhou, S.: Energy harvesting efficiency of a quasi-zero stiffness energy harvester. Eur. Phys. J. Spec. Top. 231, 1557–1565 (2022)

    Google Scholar 

  27. Margielewicz, J., Gaska, D., Litak, G., Wolszczak, P., Zhou, S.: Energy harvesting efficiency of a quasi-zero stiffness system. AIP Conf. Proc. 2425, 410004 (2022)

    Google Scholar 

  28. Margielewicz, J., Gaska, D., Litak, G., Wolszczak, P., Yurchenko, D.: Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness. Appl. Energy 307, 118159 (2022)

    Google Scholar 

  29. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 129, 449–454 (2019)

    Google Scholar 

  30. Yang, T., Hou, S., Qin, Z.H., Ding, Q., Chen, L.Q.: A dynamic reconfigurable nonlinear energy sink. J. Sound Vib. 494, 115629 (2021)

    Google Scholar 

  31. Geng, X.F., Ding, H., Mao, X.Y., Chen, L.Q.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Signal Process. 156, 107625 (2021)

    Google Scholar 

  32. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Google Scholar 

  33. Liu, Q., Cao, J., Zhang, Y., Zhao, Z., Kerschen, G., Jing, X.: Interpretable sparse identification of a bistable nonlinear energy sink. Mech. Syst. Signal Process. 193, 110254 (2023)

    Google Scholar 

  34. Cao, R., Wang, Z., Zang, J., Zhang, Y.: Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink. Appl. Math. Mech. 43(12), 1873–1886 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Liu, H., Zhao, L., Chen, J., Cong, C.: Design and characteristic analysis of magnetostrictive bistable vibration harvester with displacement amplification mechanism. Energy Convers. Manag. 243, 114361 (2021)

    Google Scholar 

  36. Margielewicz, J., Gaska, D., Litak, G., Wolszczak, P., Zhou, S.: Energy harvesting in a system with a two-stage flexible cantilever beam. Sensors 22, 7399 (2022)

    Google Scholar 

  37. Devarajan, K., Santhosh, B.: Performance enhancement of snap-through vibration energy harvester with displacement amplier. Int. J. Mech. Sci. 253, 108391 (2023)

    Google Scholar 

  38. Raj, P.R., Santhosh, B.: Parametric study and optimization of linear and nonlinear vibration absorbers combined with piezoelectric energy harvester. Int. J. Mech. Sci. 152, 268–279 (2019)

    Google Scholar 

  39. Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Signal Process. 155, 107636 (2021)

    Google Scholar 

  40. Rezaei, M., Talebitooti, R.: Investigating the performance of tri-stable magneto-piezoelastic absorber in simultaneous energy harvesting and vibration isolation. Appl. Math. Model. 102, 661–693 (2022)

    MATH  Google Scholar 

  41. Wang, Q., Zhou, J., Wang, K., Gao, J., Lin, Q., Chang, Y., Wen, G.: Dual-function quasi-zero-stiffness dynamic vibration absorber: low-frequency vibration mitigation and energy harvesting. Appl. Math. Model. 116, 636–654 (2023)

    MathSciNet  Google Scholar 

  42. Lu, Z.Q., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021)

    Google Scholar 

  43. Liu, Q., Qin, W., Yang, T., Deng, W., Zhou, Z.: Harvesting weak vibration energy by amplified inertial force and super-harmonic vibration. Energy 263, 125948 (2023)

    Google Scholar 

  44. Dalela, S., Balaji, P.S., Jena, D.P.: Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn. 108(3), 1931–1971 (2022)

    Google Scholar 

  45. Jiang, G., Jing, X., Guo, Y.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Signal Process. 138, 106552 (2020)

    Google Scholar 

  46. Wang, Y., Yang, Z., Li, P., Cao, D., Huang, W., Inman, D.J.: Energy harvesting for jet engine monitoring. Nano Energy 75, 104853 (2020)

    Google Scholar 

  47. Liu, C., Zhao, R., Yu, K., Lee, H.P., Liao, B.: A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams. Energy 233, 121146 (2021)

    Google Scholar 

  48. Rubes, O., Chalupa, J., Ksica, F., Hadas, Z.: Development and experimental validation of self-powered wireless vibration sensor node using vibration energy harvester. Mech. Syst. Signal Process. 160, 107890 (2021)

    Google Scholar 

  49. Liu, C., Jing, X., Daley, S., Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56, 55–80 (2015)

    Google Scholar 

  50. Feudo, S.L., Touzé, C., Boisson, J., Cumunel, G.: Nonlinear magnetic vibration absorber for passive control of a multi-storey structure. J. Sound Vib. 438, 33–53 (2019)

    Google Scholar 

  51. Gonçalves, A.N., Pereira, J.M., Sousa, J.M.: Passive control of dynamic stall in a H-Darrieus vertical axis wind turbine using blade leading-edge protuberances. Appl. Energy 324, 119700 (2022)

    Google Scholar 

  52. Hu, Y., Hua, T., Chen, M.Z., Shi, S., Sun, Y.: Instability analysis for semi-active control systems with semi-active inerters. Nonlinear Dyn. 105(1), 99–112 (2021)

    Google Scholar 

  53. Lavasani, S.H.H., Doroudi, R.: Meta heuristic active and semi-active control systems of high-rise building. Int. J. Struct. Eng. 10(3), 232–253 (2020)

    Google Scholar 

  54. Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Gao, T., Mirzadeh, M., Bai, P., Conforti, K.M., Bazant, M.Z.: Active control of viscous fingering using electric fields. Nat. Commun. 10(1), 4002 (2019)

    Google Scholar 

  56. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A new way to introduce geometrically nonlinear stiffness and damping with an application to vibration suppression. Nonlinear Dyn. 96, 1819–1845 (2019)

    MATH  Google Scholar 

  57. Liu, S., Peng, G., Jin, K.: Towards accurate modeling of the Tachi–Miura origami in vibration isolation platform with geometric nonlinear stiffness and damping. Appl. Math. Model. 103, 674–695 (2022)

    MathSciNet  MATH  Google Scholar 

  58. Gao, X., Teng, H.D.: Dynamics and isolation properties for a pneumatic near-zero frequency vibration isolator with nonlinear stiffness and damping. Nonlinear Dyn. 102, 2205–2227 (2020)

    Google Scholar 

  59. Zhang, Y., Kong, X., Yue, C., Xiong, H.: Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn. 105(1), 167–190 (2021)

    Google Scholar 

  60. Hao, Z., Cao, Q.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015)

    Google Scholar 

  61. Zhao, F., Cao, S., Luo, Q., Ji, J.: Enhanced design of the quasi-zero stiffness vibration isolator with three pairs of oblique springs: theory and experiment. J. Vib. Control 29(9–10), 2049–2063 (2022)

    Google Scholar 

  62. Yang, T., Cao, Q.: Noise-and delay-enhanced stability in a nonlinear isolation system. Int. J. Non-Linear Mech. 110, 81–93 (2019)

    Google Scholar 

  63. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)

    Google Scholar 

  64. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014)

    Google Scholar 

  65. Huang, X., Chen, Y., Hua, H., Liu, X., Zhang, Z.: Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: theoretical and experimental study. J. Sound Vib. 345, 178–196 (2015)

    Google Scholar 

  66. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Google Scholar 

  67. Yao, Y., Li, H., Li, Y., Wang, X.: Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with cam-roller-spring mechanism. Int. J. Mech. Sci. 186, 105888 (2020)

    Google Scholar 

  68. Zhang, Y., Wei, G., Wen, H., Jin, D., Hu, H.: Design and analysis of a vibration isolation system with cam-roller-spring-rod mechanism. J. Vib. Control 28(13–14), 1781–1791 (2022)

    MathSciNet  Google Scholar 

  69. Xu, D., Yu, Q., Zhou, J., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013)

    Google Scholar 

  70. Li, H., Zhang, J.: Design and analysis of a magnetic QZS vibration isolator. Appl. Mech. Mater. 470, 484–488 (2014)

    Google Scholar 

  71. Yan, B., Yu, N., Wu, C.: A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Appl. Math. Mech. 43(7), 1045–1062 (2022)

    MATH  Google Scholar 

  72. Tian, Y., Cao, D., Wang, Y., Tang, J., Jiang, B.: A study of a pendulum-like vibration isolator with quasi-zero-stiffness. J. Comput. Nonlinear Dyn. 17(5), 051005 (2022)

    Google Scholar 

  73. Dong, G., Zhang, X., Luo, Y., Zhang, Y., Xie, S.: Analytical study of the low frequency multi-direction isolator with high-static-low-dynamic stiffness struts and spatial pendulum. Mech. Syst. Signal Process. 110, 521–539 (2018)

    Google Scholar 

  74. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74(4), 046218 (2006)

    MathSciNet  Google Scholar 

  75. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. Int. J. Non-Linear Mech. 43(6), 462–473 (2008)

    Google Scholar 

  76. Tian, R., Cao, Q., Yang, S.: The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dyn. 59(1–2), 19 (2010)

    MathSciNet  MATH  Google Scholar 

  77. Hao, Z., Cao, Q., Wiercigroch, M.: Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn. 86, 2129–2144 (2016)

    MathSciNet  MATH  Google Scholar 

  78. Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87, 987–1014 (2017)

    Google Scholar 

  79. Wang, Q., Zhou, J., Xu, D., Ouyang, H.: Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mech. Syst. Signal Process. 139, 106633 (2020)

    Google Scholar 

  80. Cai, C., Zhou, J., Wang, K., Xu, D., Wen, G.: Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap. J. Sound Vib. 540, 117297 (2022)

    Google Scholar 

  81. Zhu, G., Liu, J., Cao, Q., Cheng, Y., Lu, Z., Zhu, Z.: A two degree of freedom stable quasi-zero stiffness prototype and its applications in aseismic engineering. Sci. China Technol. Sci. 63(3), 496–505 (2020)

    Google Scholar 

  82. Zhang, X., Cao, Q., Qiu, H., Liang, T., Huang, W.: Dynamic analysis of a loading-adapting quasi-zero-stiffness isolation system based on the rolling lobe air-springs. J. Vib. Eng. Technol. 10, 3207–3225 (2022)

    Google Scholar 

  83. Wang, K., Zhou, J., Cai, C., Xu, D., Ouyang, H.: Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Appl. Math. Model. 73, 581–597 (2019)

    MathSciNet  MATH  Google Scholar 

  84. Feng, X., Jing, X., Xu, Z., Guo, Y.: Bio-inspired anti-vibration with nonlinear inertia coupling. Mech. Syst. Signal Process. 124, 562–595 (2019)

    Google Scholar 

  85. Jing, X., Zhang, L., Feng, X., Sun, B., Li, Q.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Process. 118, 317–339 (2019)

    Google Scholar 

  86. Wang, Y., Jing, X.: Nonlinear stiffness and dynamical response characteristics of an asymmetric X-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Google Scholar 

  87. Sun, X., Jing, X.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66, 723–742 (2016)

    Google Scholar 

  88. Bian, J., Jing, X.: Analysis and design of a novel and compact X-structured vibration isolation mount (X-Mount) with wider quasi-zero-stiffness range. Nonlinear Dyn. 101(4), 2195–2222 (2020)

    Google Scholar 

  89. Dai, H., Jing, X., Wang, Y., Yue, X., Yuan, J.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Process. 105, 214–240 (2018)

    Google Scholar 

  90. Deng, T., Wen, G., Ding, H., Lu, Z.Q., Chen, L.Q.: A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mech. Syst. Signal Process. 145, 106967 (2020)

    Google Scholar 

  91. Yan, G., Zou, H.X., Wang, S., Zhao, L.C., Wu, Z.Y., Zhang, W.M.: Bio-inspired toe-like structure for low-frequency vibration isolation. Mech. Syst. Signal Process. 162, 108010 (2022)

    Google Scholar 

  92. Chai, Y., Jing, X., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022)

    Google Scholar 

  93. Yan, G., Wu, Z.Y., Wei, X.S., Wang, S., Zou, H.X., Zhao, L.C., Zhang, W.M.: Nonlinear compensation method for quasi-zero stiffness vibration isolation. J. Sound Vib. 523, 116743 (2022)

    Google Scholar 

  94. Yao, H., Cao, Y., Ding, Z., Wen, B.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Signal Process. 124, 237–253 (2019)

    Google Scholar 

  95. Zang, J., Zhang, Y.W., Ding, H., Yang, T.Z., Chen, L.Q.: The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech. Syst. Signal Process. 125, 99–122 (2019)

    Google Scholar 

  96. Chang, Y., Zhou, J., Wang, K., Xu, D.: A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 494, 115859 (2021)

    Google Scholar 

  97. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020)

    Google Scholar 

  98. Tan, D.D., Lu, Z.Q., Gu, D.H., Ding, H., Chen, L.Q.: A ring vibration isolator enhanced by a nonlinear energy sink. J. Sound Vib. 508, 116201 (2021)

    Google Scholar 

  99. Chang, Y., Zhou, J., Wang, K., Xu, D.: Theoretical and experimental investigations on semi-active quasi-zero-stiffness dynamic vibration absorber. Int. J. Mech. Sci. 214, 106892 (2022)

    Google Scholar 

  100. Churchill, C.B., Shahan, D.W., Smith, S.P., Keefe, A.C., McKnight, G.P.: Dynamically variable negative stiffness structures. Sci. Adv. 2(2), e1500778 (2016)

    Google Scholar 

  101. Palomares, E., Nieto, A.J., Morales, A.L., Chicharro, J.M., Pintado, P.: Numerical and experimental analysis of a vibration isolator equipped with a negative stiffness system. J. Sound Vib. 414, 31–42 (2018)

    Google Scholar 

  102. Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)

    Google Scholar 

  103. Zhou, N., Liu, K.: Characterization of an electromagnetic vibration isolator. J. Electromagn. Anal. Appl. 3, 519–528 (2011)

    Google Scholar 

  104. Pu, H., Yuan, S., Peng, Y., Meng, K., Zhao, J., Xie, R., Chen, X.: Multi-layer electromagnetic spring with tunable negative stiffness for semi-active vibration isolation. Mech. Syst. Signal Process. 121, 942–960 (2019)

    Google Scholar 

  105. Xu, J., Sun, X.: A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)

    Google Scholar 

  106. Yan, B., Ma, H., Zhang, L., Wu, C., Zhang, X.: Electromagnetic shunt damping for shock isolation of nonlinear vibration isolators. J. Sound Vib. 479, 115370 (2020)

    Google Scholar 

  107. Abdeljaber, O., Avci, O., Inman, D.J.: Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. J. Sound Vib. 363, 33–53 (2016)

    Google Scholar 

  108. Ning, L., Wang, Y.Z., Wang, Y.S.: Active control of elastic metamaterials consisting of symmetric double Helmholtz resonator cavities. Int. J. Mech. Sci. 153, 287–298 (2019)

    Google Scholar 

  109. Hu, H., Yu, R., Teng, H., Hu, D., Chen, N., Qu, Y., Dai, Q.: Active control of micrometer plasmon propagation in suspended graphene. Nat. Commun. 13(1), 1465 (2022)

    Google Scholar 

  110. Zhang, Z., Zhang, J., Yin, H., Zhang, B., Jing, X.: Bio-inspired structure reference model oriented robust full vehicle active suspension system control via constraint-following. Mech. Syst. Signal Process. 179, 109368 (2022)

    Google Scholar 

  111. Zhang, M., Jing, X., Huang, W., Li, P.: Saturated PD-SMC method for suspension systems by exploiting beneficial nonlinearities for improved vibration reduction and energy-saving performance. Mech. Syst. Signal Process. 179, 109376 (2022)

    Google Scholar 

  112. Foong, F.M., Thein, C.K., Yurchenko, D.: Important considerations in optimising the structural aspect of a SDOF electromagnetic vibration energy harvester. J. Sound Vib. 482, 115470 (2020)

    Google Scholar 

  113. Hasani, M., Rahaghi, M.I.: The optimization of an electromagnetic vibration energy harvester based on developed electromagnetic damping models. Energy Convers. Manag. 254, 115271 (2022)

    Google Scholar 

  114. Imbaquingo, C., Bahl, C., Insinga, A.R., Bjørk, R.: A two-dimensional electromagnetic vibration energy harvester with variable stiffness. Appl. Energy 325, 119650 (2022)

    Google Scholar 

  115. Hao, Z., Wang, D., Wiercigroch, M.: Nonlinear dynamics of new magneto-mechanical oscillator. Commun. Nonlinear Sci. Numer. Simul. 105, 106092 (2022)

    MathSciNet  MATH  Google Scholar 

  116. Aldawood, G., Nguyen, H.T., Bardaweel, H.: High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations. Appl. Energy 253, 113546 (2019)

    Google Scholar 

  117. Nico, V., Frizzell, R., Punch, J.: The identification of period doubling in a nonlinear two-degree-of-freedom electromagnetic vibrational energy harvester. IEEE/ASME Trans. Mech. 25(6), 2973–2980 (2020)

    Google Scholar 

  118. Liu, Z., Wang, X., Ding, S., Zhang, R., McNabb, L.: A new concept of speed amplified nonlinear electromagnetic vibration energy harvester through fixed pulley wheel mechanisms and magnetic springs. Mech. Syst. Signal Process. 126, 305–325 (2019)

    Google Scholar 

  119. Yu, N., Ma, H., Wu, C., Yu, G., Yan, B.: Modeling and experimental investigation of a novel bistable two-degree-of-freedom electromagnetic energy harvester. Mech. Syst. Signal Process. 156, 107608 (2021)

    Google Scholar 

  120. Hou, Z., Zha, W., Wang, H., Liao, W.H., Bowen, C.R., Cao, J.: Bistable energy harvesting backpack: design, modeling, and experiments. Energy Convers. Manag. 259, 115441 (2022)

    Google Scholar 

  121. Yang, T., Cao, Q., Li, Q., Qiu, H.: A multi-directional multi-stable device: modeling, experiment verification and applications. Mech. Syst. Signal Process. 146, 106986 (2021)

    Google Scholar 

  122. Li, M., Jing, X.: A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: design, analysis, and experimental tests. Energy Convers. Manag. 244, 114466 (2021)

    Google Scholar 

  123. Yao, M., Wang, X., Wu, Q., Niu, Y., Wang, S.: Dynamic analysis and design of power management circuit of the nonlinear electromagnetic energy harvesting device for the automobile suspension. Mech. Syst. Signal Process. 170, 108831 (2022)

    Google Scholar 

  124. Pan, Q., Wang, B., Zhang, L., Li, Z., Yang, Z.: Whisk-inspired motion converter for ocean wave energy harvesting. IEEE/ASME Trans. Mech. 27(3), 1808–1811 (2021)

    Google Scholar 

  125. Yang, Z., Zhou, S., Zu, J., Inman, D.: High-performance piezoelectric energy harvesters and their applications. Joule 2(4), 642–697 (2018)

    Google Scholar 

  126. Wang, B., Hong, Y., Long, Z., Pan, Q., Li, P., Xi, Y., Yang, Z.: Characterization of wrist motions and bionic energy harvesting for wrist wearables. IEEE Int. Things J. 9(21), 21147–21156 (2022)

    Google Scholar 

  127. Li, X., Yurchenko, D., Li, R., Feng, X., Yan, B., Yang, K.: Performance and dynamics of a novel bistable vibration energy harvester with appended nonlinear elastic boundary. Mech. Syst. Signal Process. 185, 109787 (2023)

    Google Scholar 

  128. Kim, H.S., Kim, J.H., Kim, J.: A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 12, 1129–1141 (2011)

    Google Scholar 

  129. Rafique, S., Rafique, Q., Quinn: Piezoelectric Vibration Energy Harvesting. Springer, Berlin (2018)

    Google Scholar 

  130. Salazar, R., Serrano, M., Abdelkefi, A.: Fatigue in piezoelectric ceramic vibrational energy harvesting: a review. Appl. Energy 270, 115161 (2020)

    Google Scholar 

  131. Wang, Z., Li, T., Du, Y., Yan, Z., Tan, T.: Nonlinear broadband piezoelectric vibration energy harvesting enhanced by inter-well modulation. Energy Convers. Manag. 246, 114661 (2021)

    Google Scholar 

  132. Li, Z., Tang, L., Yang, W., Zhao, R., Liu, K., Mace, B.: Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface. Nano Energy 87, 106179 (2021)

    Google Scholar 

  133. Qichang, Z., Yang, Y., Wei, W.: Theoretical study on widening bandwidth of piezoelectric vibration energy harvester with nonlinear characteristics. Micromachines 12(11), 1301 (2021)

    Google Scholar 

  134. Sun, X., Wang, F., Xu, J.: Nonlinear piezoelectric structure for ultralow-frequency band vibration energy harvesting with magnetic interaction. Int. J. Precis. Eng. Manuf. Tech. 6, 671–679 (2019)

    Google Scholar 

  135. Zhou, J., Zhao, X., Wang, K., Chang, Y., Xu, D., Wen, G.: Bio-inspired bistable piezoelectric vibration energy harvester: design and experimental investigation. Energy 228, 120595 (2021)

    Google Scholar 

  136. Fan, Y., Ghayesh, M.H., Lu, T.F.: High-efficient internal resonance energy harvesting: modelling and experimental study. Mech. Syst. Signal Process. 180, 109402 (2022)

    Google Scholar 

  137. Huang, D., Han, J., Zhou, S., Han, Q., Yang, G., Yurchenko, D.: Stochastic and deterministic responses of an asymmetric quad-stable energy harvester. Mech. Syst. Signal Process. 168, 108672 (2022)

    Google Scholar 

  138. Li, H., Ding, H., Jing, X., Qing, W., Chen, L.Q.: Improving the performance of a tri-stable energy harvester with a staircase-shaped potential well. Mech. Syst. Signal Process. 159, 107805 (2021)

    Google Scholar 

  139. Ma, X., Li, H., Zhou, S., Yang, Z., Litak, G.: Characterizing nonlinear characteristics of asymmetric tristable energy harvesters. Mech. Syst. Signal Process. 168, 108612 (2022)

    Google Scholar 

  140. Li, M., Jing, X.: Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting. Appl. Energy 255, 113829 (2019)

    Google Scholar 

  141. Yang, K., Abdelkefi, A., Li, X., Mao, Y., Dai, L., Wang, J.: Stochastic analysis of a galloping-random wind energy harvesting performance on a buoy platform. Energy Convers. Manag. 238, 114174 (2021)

    Google Scholar 

  142. Li, X., Xu, G., Xia, X., Fu, J., Huang, L., Zi, Y.: Standardization of triboelectric nanogenerators: progress and perspectives. Nano Energy 56, 40–55 (2019)

    Google Scholar 

  143. Liu, W., Wang, Z., Wang, G., Liu, G., Chen, J., Pu, X., Wang, Z.L.: Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 10(1), 1426 (2019)

    Google Scholar 

  144. Li, M., Lu, H.W., Wang, S.W., Li, R.P., Chen, J.Y., Chuang, W.S., Lai, Y.C.: Filling the gap between topological insulator nanomaterials and triboelectric nanogenerators. Nat. Commun. 13(1), 938 (2022)

    Google Scholar 

  145. Zou, Y., Xu, J., Fang, Y., Zhao, X., Zhou, Y., Chen, J.: A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 83, 105845 (2021)

    Google Scholar 

  146. Liu, W., Wang, Z., Hu, C.: Advanced designs for output improvement of triboelectric nanogenerator system. Mater. Today 45, 93–119 (2021)

    Google Scholar 

  147. Guan, D., Xu, G., Xia, X., Wang, J., Zi, Y.: Boosting the output performance of the triboelectric nanogenerator through the nonlinear oscillator. ACS Appl. Mater. Interfaces 13(5), 6331–6338 (2021)

    Google Scholar 

  148. Han, Q., Jiang, Z., Shao, Q., Gao, S., Chu, F.: Electromechanical modeling of rolling spherical triboelectric nanogenerators considering nonlinear effects. Adv. Theory Simul. 5, 2200373 (2022)

    Google Scholar 

  149. Xu, G., Fu, J., Li, C., Xing, J., Chen, C., Liao, W.H., Zi, Y.: A nonlinear triboelectric nanogenerator with a broadened bandwidth for effective harvesting of vibration energy. iEnergy 1(2), 236–242 (2022)

    Google Scholar 

  150. Tan, D., Zhou, J., Wang, K., Zhao, X., Wang, Q., Xu, D.: Bow-type bistable triboelectric nanogenerator for harvesting energy from low-frequency vibration. Nano Energy 92, 106746 (2022)

    Google Scholar 

  151. Luo, H., Liu, J., Yang, T., Zhang, Y., Cao, Q.: Dipteran flight-inspired bistable triboelectric nanogenerator for harvesting low frequency vibration. Nano Energy 103, 107755 (2022)

    Google Scholar 

  152. Yang, T., Cao, Q.: Dynamics and energy generation of a hybrid energy harvester under colored noise excitations. Mech. Syst. Signal Process. 121, 745–766 (2019)

    Google Scholar 

  153. Yang, T., Cao, Q.: Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn. 96, 1511–1530 (2019)

    Google Scholar 

  154. Hou, C., Li, C., Shan, X., Yang, C., Song, R., Xie, T.: A broadband piezo-electromagnetic hybrid energy harvester under combined vortex-induced and base excitations. Mech. Syst. Signal Process. 171, 108963 (2022)

    Google Scholar 

  155. Zhao, C., Zhang, Q., Zhang, W., Du, X., Zhang, Y., Gong, S., Wang, Z.L.: Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy 57, 440–449 (2019)

    Google Scholar 

  156. Hao, C., He, J., Zhai, C., Jia, W., Song, L., Cho, J., Xue, C.: Two-dimensional triboelectric-electromagnetic hybrid nanogenerator for wave energy harvesting. Nano Energy 58, 147–157 (2019)

    Google Scholar 

  157. Margielewicz, J., Gaska, D., Litak, G., Wolszczak, P., Yurchenko, D.: Influence of impulse characteristics on realizing high-energy orbits in hybrid energy harvester. Energy Convers. Manag. 277, 116672 (2023)

    Google Scholar 

  158. Liu, H., Fu, H., Sun, L., Lee, C., Yeatman, E.M.: Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 137, 110473 (2021)

    Google Scholar 

  159. Iqbal, M., Khan, F.U.: Hybrid vibration and wind energy harvesting using combined piezoelectric and electromagnetic conversion for bridge health monitoring applications. Energy Convers. Manag. 172, 611–618 (2018)

    Google Scholar 

  160. Al-Turjman, F., Lemayian, J.P.: Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities: an overview. Comput. Electr. Eng. 87, 106776 (2020)

    Google Scholar 

  161. Adam, M.S., Anisi, M.H., Ali, I.: Object tracking sensor networks in smart cities: taxonomy, architecture, applications, research challenges and future directions. Future Gener. Comput. Syst. 107, 909–923 (2020)

    Google Scholar 

  162. Sharma, H., Haque, A., Blaabjerg, F.: Machine learning in wireless sensor networks for smart cities: a survey. Electronics 10(9), 1012 (2021)

    Google Scholar 

  163. Javadinasab Hormozabad, S., Gutierrez Soto, M., Adeli, H.: Integrating structural control, health monitoring, and energy harvesting for smart cities. Expert Syst. 38(8), e12845 (2021)

    Google Scholar 

  164. Ali, S., Singh, R.P., Javaid, M., Haleem, A., Pasricha, H., Suman, R., Karloopia, J.: A review of the role of smart wireless medical sensor network in COVID-19. J. Ind. Integr. Manag. 5(04), 413–425 (2020)

    Google Scholar 

  165. Hidalgo-Leon, R., Urquizo, J., Silva, C.E., Silva-Leon, J., Wu, J., Singh, P., Soriano, G.: Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: a review. Energy Rep. 8, 3809–3826 (2022)

    Google Scholar 

  166. Mysorewala, M.F., Cheded, L., Aliyu, A.: Review of energy harvesting techniques in wireless sensor-based pipeline monitoring networks. Renew. Sustain. Energy Rev. 157, 112046 (2022)

    Google Scholar 

  167. Sun, X., Jing, X.: Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mech. Syst. Signal Process. 62, 149–163 (2015)

    Google Scholar 

  168. Wu, W., Tang, B.: Performance analysis of a geometrically nonlinear isolation system subjected to high levels of excitation. Appl. Math. Model. 108, 612–628 (2022)

    MathSciNet  MATH  Google Scholar 

  169. Moraes, F.D.H., Silveira, M., Gonçalves, P.J.P.: On the dynamics of a vibration isolator with geometrically nonlinear inerter. Nonlinear Dyn. 93, 1325–1340 (2018)

    Google Scholar 

  170. Khazaee, M., Khadem, S.E., Moslemi, A., Abdollahi, A.: Vibration mitigation of a pipe conveying fluid with a passive geometrically nonlinear absorber: a tuning optimal design. Commun. Nonlinear Sci. Numer. Simul. 91, 105439 (2020)

    MathSciNet  MATH  Google Scholar 

  171. Zhang, Z., Gao, Z.T., Fang, B., Zhang, Y.W.: Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks. Nonlinear Dyn. 109(3), 1259–1275 (2022)

    Google Scholar 

  172. Yang, T., Cao, Q.: Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. J. Stat. Mech. Theory Exp. 2019(3), 033405 (2019)

    MathSciNet  MATH  Google Scholar 

  173. Yan, Y., Zhang, Q., Han, J., Wang, W., Wang, T., Cao, X., Hao, S.: Design and investigation of a quad-stable piezoelectric vibration energy harvester by using geometric nonlinearity of springs. J. Sound Vib. 547, 117484 (2023)

    Google Scholar 

  174. Wang, G., Zhao, Z., Liao, W.H., Tan, J., Ju, Y., Li, Y.: Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mech. Syst. Signal Process. 138, 106571 (2020)

    Google Scholar 

  175. Yang, T., Xu, H., Tang, J., Zhou, S.: Exploring nonlinear degradation benefit of bio-inspired oscillator for engineering applications. Appl. Math. Model. 119, 736–762 (2023)

    MathSciNet  Google Scholar 

  176. Yang, T., Zhang, Y., Zhou, S.: Multistage oscillators for ultra-low frequency vibration isolation and energy harvesting. Sci. China Technol. Sci. 65(3), 631–645 (2022)

    Google Scholar 

  177. Chen, Z., Chen, Z., Wei, Y.: Quasi-zero stiffness-based synchronous vibration isolation and energy harvesting: a comprehensive review. Energies 15(19), 7066 (2022)

    Google Scholar 

  178. Zhang, Y., Yang, T., Du, H., Zhou, S.: Wideband vibration isolation and energy harvesting based on a coupled piezoelectric-electromagnetic structure. Mech. Syst. Signal Process. 184, 109689 (2023)

    Google Scholar 

  179. Cao, D., Guo, X., Hu, W.: A novel low-frequency broadband piezoelectric energy harvester combined with a negative stiffness vibration isolator. J. Int. Mater. Syst. Struct. 30(7), 1105–1114 (2019)

    Google Scholar 

  180. Kakou, P., Barry, O.: Simultaneous vibration reduction and energy harvesting of a nonlinear oscillator using a nonlinear electromagnetic vibration absorber-inerter. Mech. Syst. Signal Process. 156, 107607 (2021)

    Google Scholar 

  181. Guo, M., Zheng, G.: Tunable energy harvesting vibration absorber with liquid-metal filled elastic chamber. Mech. Syst. Signal Process. 190, 110137 (2023)

    Google Scholar 

  182. Wang, X., Wu, H., Yang, B.: Nonlinear multi-modal energy harvester and vibration absorber using magnetic softening spring. J. Sound Vib. 476, 115332 (2020)

    Google Scholar 

  183. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: transient responses. J. Sound Vib. 333(20), 4859–4880 (2014)

    Google Scholar 

  184. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: harmonically forced responses. J. Sound Vib. 410, 287–302 (2017)

    Google Scholar 

  185. Xiong, L., Tang, L., Liu, K., Mace, B.R.: Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. J. Phys. D Appl. Phys. 51(18), 185502 (2018)

    Google Scholar 

  186. Pennisi, G., Mann, B.P., Naclerio, N., Stephan, C., Michon, G.: Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018)

    Google Scholar 

  187. Darabi, A., Leamy, M.J.: Clearance-type nonlinear energy sinks for enhancing performance in electroacoustic wave energy harvesting. Nonlinear Dyn. 87, 2127–2146 (2017)

    Google Scholar 

  188. Yang, T., Zhang, Y., Zhou, S., Fan, H., Zhang, X.: Wideband energy harvesting using nonlinear energy sink with bio-inspired hexagonal skeleton structure. Commun. Nonlinear Sci. Numer. Simul. 111, 106465 (2022)

    MathSciNet  MATH  Google Scholar 

  189. Zhang, A., Sorokin, V., Li, H.: Energy harvesting using a novel autoparametric pendulum absorber-harvester. J. Sound Vib. 499, 116014 (2021)

    Google Scholar 

  190. Wang, J.: Optimal design for energy harvesting vibration absorbers. J. Dyn. Syst. Meas. Control 143(5), 051008 (2021)

    Google Scholar 

  191. Choi, Y.T., Wereley, N.M.: Self-powered magnetorheological dampers. J. Vib. Acoust. 131(4), 044501 (2009)

    Google Scholar 

  192. Wang, Z., Chen, Z., Gao, H., Wang, H.: Development of a self-powered magnetorheological damper system for cable vibration control. Appl. Sci. 8(1), 118 (2018)

    Google Scholar 

  193. Shen, W., Zhu, S., Zhu, H.: Unify energy harvesting and vibration control functions in randomly excited structures with electromagnetic devices. J. Eng. Mech. 145(1), 04018115 (2019)

    Google Scholar 

  194. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K., Sunakoda, K.: Seismic response control using electromagnetic inertial mass dampers. Earth. Eng. Struct. Dyn. 43(4), 507–527 (2014)

    Google Scholar 

  195. Marian, L., Giaralis, A.: The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting. Smart Struct. Syst. 19(6), 665–678 (2017)

    Google Scholar 

  196. Zhu, H., Li, Y., Shen, W., Zhu, S.: Mechanical and energy-harvesting model for electromagnetic inertial mass dampers. Mech. Syst. Signal Process. 120, 203–220 (2019)

    Google Scholar 

  197. Xie, L., Li, J., Li, X., Huang, L., Cai, S.: Damping-tunable energy-harvesting vehicle damper with multiple controlled generators: design, modeling and experiments. Mech. Syst. Signal Process. 99, 859–872 (2018)

    Google Scholar 

  198. Cai, Q.L., Zhu, S.: Enhancing the performance of electromagnetic damper cum energy harvester using microcontroller: concept and experiment validation. Mech. Syst. Signal Process. 134, 106339 (2019)

    Google Scholar 

  199. Zhu, S., Shen, W.A., Xu, Y.L.: Linear electromagnetic devices for vibration damping and energy harvesting: modeling and testing. Eng. Struct. 34, 198–212 (2012)

    Google Scholar 

  200. Azangbebil, H., Djokoto, S.S., Agelin-Chaab, M.: Experimental and numerical studies of a soft impact piezoelectric energy harvesting using an MR fluid. IEEE Sens. J. 20(19), 11204–11211 (2020)

    Google Scholar 

  201. Guan, X., Huang, Y., Li, H., Ou, J.: Adaptive MR damper cable control system based on piezoelectric power harvesting. Smart Struct. Syst. 10(1), 33–46 (2012)

    Google Scholar 

  202. Hande, A., Polk, T., Walker, W., Bhatia, D.: Self-powered wireless sensor networks for remote patient monitoring in hospitals. Sensors 6(9), 1102–1117 (2006)

    Google Scholar 

  203. Tang, X., Wang, X., Cattley, R., Gu, F., Ball, A.D.: Energy harvesting technologies for achieving self-powered wireless sensor networks in machine condition monitoring: a review. Sensors 18(12), 4113 (2018)

    Google Scholar 

  204. Wang, Z.L.: Toward self-powered sensor networks. Nano Today 5(6), 512–514 (2010)

    Google Scholar 

  205. Chen, X., Gao, L., Chen, J., Lu, S., Zhou, H., Wang, T., Yang, Y.: A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440 (2020)

    Google Scholar 

  206. Xie, Q., Zhang, T., Pan, Y., Zhang, Z., Yuan, Y., Liu, Y.: A novel oscillating buoy wave energy harvester based on a spatial double X-shaped mechanism for self-powered sensors in sea-crossing bridges. Energy Convers. Manag. 204, 112286 (2020)

    Google Scholar 

  207. Rosół, M., Sapiński, B.: Ability of energy harvesting MR damper to act as a velocity sensor in vibration control systems. Acta Mech. Autom. 13(2), 135–145 (2019)

    Google Scholar 

  208. Maharjan, P., Salauddin, M., Cho, H., Park, J.Y.: An indoor power line based magnetic field energy harvester for self-powered wireless sensors in smart home applications. Appl. Energy 232, 398–408 (2018)

    Google Scholar 

  209. Zhang, L., Zhang, F., Qin, Z., Han, Q., Wang, T., Chu, F.: Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring. Energy 238, 121770 (2022)

    Google Scholar 

  210. Gunn, B., Alevras, P., Flint, J.A., Fu, H., Rothberg, S.J., Theodossiades, S.: A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains. Appl. Energy 302, 117479 (2021)

    Google Scholar 

  211. Sun, W., Ding, Z., Qin, Z., Chu, F., Han, Q.: Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 70, 104526 (2020)

    Google Scholar 

  212. Li, S., Liu, D., Zhao, Z., Zhou, L., Yin, X., Li, X., Wang, Z.L.: A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators. Acs Nano 14(2), 2475–2482 (2020)

    Google Scholar 

  213. Wang, Y., Inman, D.J.: Simultaneous energy harvesting and gust alleviation for a multifunctional composite wing spar using reduced energy control via piezoceramics. J. Compos. Mater. 47(1), 125–146 (2013)

    Google Scholar 

  214. Zhou, W.: Multifunctional Smart Structures for Energy Harvesting, Structure Health Monitoring, and Vibration Control. Doctoral dissertation, State University of New York at Stony Brook (2015)

  215. Fu, Y., Wang, H., Zi, Y., Liang, X.: A multifunctional robotic system toward moveable sensing and energy harvesting. Nano Energy 89, 106368 (2021)

    Google Scholar 

  216. Barri, K., Jiao, P., Zhang, Q., Chen, J., Wang, Z.L., Alavi, A.H.: Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy 86, 106074 (2021)

    Google Scholar 

  217. Healy, F., Cheung, R., Rezgui, D., Cooper, J., Wilson, T., Castrichini, A.: On the effect of geometric nonlinearity on the dynamics of flared folding wingtips. J. Aircr. 60(2), 368–381 (2022)

    Google Scholar 

  218. Mirhashemi, S., Haddadpour, H.: Nonlinear dynamics of a nearly taut cable subjected to parametric aerodynamic excitation due to a typical pulsatile wind flow. Int. J. Eng. Sci. 188, 103865 (2023)

  219. Kou, J., Zhang, W.: Data-driven modeling for unsteady aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 125, 100725 (2021)

    Google Scholar 

  220. Chen, R., Chen, J., Wang, P., Fang, J., Xu, J.: Impact of wheel profile evolution on wheel-rail dynamic interaction and surface initiated rolling contact fatigue in turnouts. Wear 438, 203109 (2019)

    Google Scholar 

  221. Chang, C., Ding, X., Ling, L., Li, F., Liu, T., Wang, K., Zhai, W.: Mechanism of high-speed train carbody shaking due to degradation of wheel-rail contact geometry. Int. J. Rail Trans. 11, 289–316 (2022)

    Google Scholar 

  222. Yang, Z., Li, Z.: 7-Wheel-rail dynamic interaction. In: Woodhead Publishing Series in Civil and Structural Engineering, Rail Infrastructure Resilience, pp. 111–135. Woodhead Publishing (2022)

  223. Zou, J., Du, T., Chen, W., Fang, C., Zhang, S., Zou, C., Chen, H.: Experimental study of concrete floating slab municipal road with steel spring isolators under vehicle loads. Constr. Build. Mater. 315, 125686 (2022)

    Google Scholar 

  224. Wang, Z., Wang, W., Tang, L., Tian, R., Wang, C., Zhang, Q., Ball, A.D.: A piezoelectric energy harvester for freight train condition monitoring system with the hybrid nonlinear mechanism. Mech. Syst. Signal Process. 180, 109403 (2022)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Granted Nos. 12002272, 12272293, 52161135106). TY wishes to thank the supports from Hong Kong Scholar. GL was supported by the National Science Centre, Poland, under the project SHENG-2, No. 2021/40/Q/ST8/00362.

Author information

Authors and Affiliations

Authors

Contributions

T. Yang was involved in conceptualization, methodology, analysis of results and discussions, investigation, funding acquisition and writing the original draft. S. Zhou was responsible for investigation, conceptualization, reviewing and editing. G. Litak contributed to conceptualization, reviewing and editing. X. Jing took part in supervision, investigation, conceptualization, reviewing and editing.

Corresponding author

Correspondence to Xingjian Jing.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Zhou, S., Litak, G. et al. Recent advances in correlation and integration between vibration control, energy harvesting and monitoring. Nonlinear Dyn 111, 20525–20562 (2023). https://doi.org/10.1007/s11071-023-08999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08999-2

Keywords

Navigation