Skip to main content
Log in

Nonlinear disturbance observer-based model predictive control for magnetically levitated slice motor

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Towards magnetically levitated slice motor (MLSM) which is a seriously coupled and nonlinear multi-input–multi-output system with fast dynamics, this paper proposes a novel nonlinear disturbance observer-based model predictive control scheme that decouples the outputs and enhances the system response speed and anti-disturbance capability while guaranteeing robustness and static performances. Based on the nominal mathematical model of MLSM, the closed-form MPC is employed to derive the optimal control inputs offline. With the derived inputs applied, the outputs are decoupled and meanwhile, a fast dynamic response is ensured. Nevertheless, the outputs suffer from various disturbances, including matching and mismatching ones. Aiming to eliminate disturbances from the outputs, a disturbance compensation matrix is deduced while a nonlinear disturbance observer is utilized to give the disturbance estimation. Finally, experiments together with simulations demonstrate that the proposed controller presents superiorities when compared to the dual-loop PID-PI controller. In the experiments, the settling times of speed step and displacement step are reduced by 54.5% and 95%, respectively and overshoots are avoided. Displacement deviation induced by speed step is 0 mm while it is an average of 0.27635 mm under PID-PI controller. Moreover, when disturbed, recovery time and deviation value of the system are reduced simultaneously by over 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Some or all data, models or code generated or used during the study are available from the corresponding author by request.

References

  1. Silber, S., Amrhein, W., Bosch, P., Schob, R., Barletta, N.: Design aspects of bearingless slice motors. IEEE-ASME Trans. Mechatron. (2005). https://doi.org/10.1109/TMECH.2005.859813

    Article  Google Scholar 

  2. Puentener, P., Schuck, M., Kolar, J. W., Steinert, D.: Comparison of bearingless slice motor topologies for pump applications. In: 2019 IEEE International Electric Machines & Drives Conf. (2019). https://doi.org/10.1109/IEMDC.2019.8785163

  3. Ahn, H.J., Vo, N.V., Jin, S.: Three-phase coil configurations for the radial suspension of a bearingless slice motor. Int. J. Precis. Eng. Manuf. (2022). https://doi.org/10.1007/s12541-022-00741-z

    Article  Google Scholar 

  4. Noh, M., Gruber, W., Trumper, D.L.: Hysteresis bearingless slice motors with homopolar flux-biasing. IEEE-ASME Trans. Mechatron. (2017). https://doi.org/10.1109/TMECH.2017.2740429

    Article  Google Scholar 

  5. Baumgartner, T., Burkart, R.M., Kolar, J.W.: Analysis and design of a 300-w 500 000-r/min slotless self-bearing permanent-magnet motor. IEEE Trans. Ind. Electron. (2014). https://doi.org/10.1109/TIE.2013.2284159

    Article  Google Scholar 

  6. Ren, Y., Su, D., Fang, J.: Whirling modes stability criterion for a magnetically suspended flywheel rotor with significant gyroscopic effects and bending modes. IEEE Trans. Power Electron. (2013). https://doi.org/10.1109/TPEL.2013.2253126

    Article  Google Scholar 

  7. Kobayashi, S., Ooshima, M., Uddin, M.N.: A radial position control method of bearingless motor based on d-q axis current control. IEEE Trans. Ind. Appl. (2013). https://doi.org/10.1109/TIA.2013.2257972

    Article  Google Scholar 

  8. Puentener, P., Schuck, M., Steinert, D., Nussbaumer, T., Kolar, J.W.: A 150 000-r/min bearingless slice motor. IEEE-ASME Trans. Mechatron. (2018). https://doi.org/10.1109/TMECH.2018.2873894

    Article  Google Scholar 

  9. Kant, K., Trumper, D. L.: Rotor design for 2 pole bearingless interior permanent magnet slice motor. In: 2021 IEEE Energy Conversion Congress and Exposition (2021). https://doi.org/10.1109/ECCE47101.2021.9595260

  10. Asama, J., Oi, T., Oiwa, T., Chiba, A.: Simple driving method for a 2-DOF controlled bearingless motor using one three-phase inverter. IEEE Trans. Ind. Appl. (2018). https://doi.org/10.1109/TIA.2018.2845405

    Article  Google Scholar 

  11. Sun, X., Chen, L., Yang, Z.: Overview of bearingless permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. (2013). https://doi.org/10.1109/TIE.2012.2232253

    Article  Google Scholar 

  12. Pei, T., Li, D., Liu, J., Li, J., Kong, W.: Review of bearingless synchronous motors: principle and topology. IEEE Trans. Transp. Electrif. (2022). https://doi.org/10.1109/TTE.2022.3164420

    Article  Google Scholar 

  13. Sun, X., Chen, L., Jiang, H., Yang, Z., Chen, J., Zhang, W.: High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers. IEEE Trans. Ind. Electron. (2016). https://doi.org/10.1109/TIE.2016.2530040

    Article  Google Scholar 

  14. Zhang, S., Luo, F.: Direct control of radial displacement for bearingless permanent-magnet-type synchronous motors. IEEE Trans. Ind. Electron. (2009). https://doi.org/10.1109/TIE.2008.2003219

    Article  Google Scholar 

  15. Zhu, H., Tan, E., Wang, C., Huang, Z., Jia, H.: Direct torque and direct suspension force control of bearingless permanent magnet synchronous motor. In: 2010 Chinese Control and Decision Conference (2010). https://doi.org/10.1109/CCDC.2010.5498804

  16. Zhang, W., Zhu, H., Xu, Y., Wu, M.: Direct control of bearingless permanent magnet slice motor based on active disturbance rejection control. IEEE Trans. Appl. Supercond. (2020). https://doi.org/10.1109/TASC.2020.2973599

    Article  Google Scholar 

  17. Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-07682-3

    Article  Google Scholar 

  18. Manzoor, T., Pei, H., Cheng, Z.: Composite observer-based robust model predictive control technique for ducted fan aerial vehicles. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08011-3

    Article  Google Scholar 

  19. Affan, M., Uddin, R.: Brain emotional learning and adaptive model predictive controller for induction motor drive: a new cascaded vector control topology. Int. J. Control. Autom. Syst. (2021). https://doi.org/10.1007/s12555-020-0306-z

    Article  Google Scholar 

  20. Martin, C., Arahal, M.R., Barrero, F., Duran, M.J.: Five-phase induction motor rotor current observer for finite control set model predictive control of stator current. IEEE Trans. Ind. Electron. (2016). https://doi.org/10.1109/TIE.2016.2536578

    Article  Google Scholar 

  21. Preindl, M., Bolognani, S.: Model predictive direct speed control with finite control set of pmsm drive systems. IEEE Trans. Power Electron. (2013). https://doi.org/10.1109/TPEL.2012.2204277

    Article  Google Scholar 

  22. Sawma, J., Khatounian, F., Monmasson, E., Idkhajine, L., Ghosn, R.: Robustness study of a cascaded dual model-predictive control applied to synchronous motors. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2018.2874577

    Article  Google Scholar 

  23. Apte, A., Joshi, V.A., Mehta, H., Walambe, R.: Disturbance-observer-based sensorless control of pmsm using integral state feedback controller. IEEE Trans. Power Electron. (2020). https://doi.org/10.1109/TPEL.2019.2949921

    Article  Google Scholar 

  24. Miranda-Colorado, R.: Robust observer-based anti-swing control of 2D-crane systems with load hoisting-lowering. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06443-x

    Article  Google Scholar 

  25. Yang, J., Li, S., Chen, W.: Nonlinear disturbance observer-based control for multi-input multi-output nonlinear systems subject to mismatching condition. Int. J. Control. (2012). https://doi.org/10.1080/00207179.2012.675520

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, W.: Closed-form nonlinear MPC for multivariable nonlinear systems with different relative degree. In: Proceedings of the 2003 American Control Conference (2003). https://doi.org/10.1109/ACC.2003.1242497

  27. Chen, W., Balance, D., Gawthrop, P.: Optimal control of nonlinear systems: a predictive control approach. Automatica (2003). https://doi.org/10.1016/S0005-1098(02)00272-8

    Article  Google Scholar 

  28. Chen, W., Balance, D., Gawthrop, P.: Nonlinear generalised predictive control and optimal dynamical inversion control. IFAC Proceedings Volumes (1999). https://doi.org/10.1016/S1474-6670(17)56432-0

    Article  Google Scholar 

  29. Hüttner, C.: Regelungskonzepte magnetisch gelagerter Scheibenmotoren. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland (2003).

  30. Bösch, P.: Lagerlose Scheibenläufermotoren höherer Leistung. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland (2004).

  31. Slotine, J., Li, W.: Applied nonlinear control. Prentice-Hall, Englewood Cliffs, New Jersey (1991)

    MATH  Google Scholar 

  32. Yang, J., Chen, W., Li, S.: Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Contr. Theory Appl. (2011). https://doi.org/10.1049/iet-cta.2010.0616

    Article  MathSciNet  Google Scholar 

  33. Chen, W., Balance, D., Gawthrop, P., Gribble, J., O’Reilly, J.: Nonlinear PID predictive controller. In: IEE Proc.-Control Theory Appl. (1999). https://doi.org/10.1049/ip-cta:19990744

  34. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall, Upper Saddle River, New Jersey (1996)

    Google Scholar 

  35. Isidori, A.: Nonlinear Control Systems II. Springer, London (1999)

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52075475, No. 52105071), the Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 51821093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Hu.

Ethics declarations

Conflict of interest

The authors declare that no competing financial interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hu, L., Su, R. et al. Nonlinear disturbance observer-based model predictive control for magnetically levitated slice motor. Nonlinear Dyn 111, 21797–21814 (2023). https://doi.org/10.1007/s11071-023-08996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08996-5

Keywords

Navigation