Skip to main content
Log in

Effects of stochastic perturbations on the tree–grass coexistence in savannas

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Savannas are widely distributed on the earth, and the growth of plants in savannas often encounters the environmental perturbations. In this research, based on a deterministic tree–grass savanna model proposed by Tamen et al. (Biomath 3: 1407191, 2014), we use white noise and a continuous-time Markov chain to model the slight environmental perturbations and environmental regime switching, respectively, and formulate a stochastic tree–grass savanna model under regime switching. We first give conditions under which the model is permanent (i.e., the tree species and the grass species coexist) in the sense that the model admits a unique ergodic non-boundary stationary distribution and the transition probability of the solution of the model converges to this stationary distribution exponentially under total variation norm. Then, we provide conditions under which the grass species or the tree species die out. Finally, we discuss the impacts of random environmental perturbations on the coexistence and disintegration of the model with the help of exemplary data and numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Scholes, R., Archer, S.: Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997)

    Article  Google Scholar 

  2. Sankaran, M., Hanan, N., Scholes, R., et al.: Determinants of woody cover in African savannas. Nature 438, 846–849 (2005)

    Article  Google Scholar 

  3. Campbell, B.: The Miombo in Transition. Woodlands and Welfare in Africa, Bogor (Indonesia) CIFOR (1996)

    Google Scholar 

  4. Tilman, D.: Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16 (1994)

    Article  Google Scholar 

  5. Lehmann, C., Anderson, T., Sankaran, M., et al.: Savanna vegetation-fire-climate relationships differ among continents. Science 343, 548–552 (2014)

    Article  Google Scholar 

  6. Staver, A., Asner, G., Rodriguez-Iturbe, I., et al.: Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proc. Natl. Acad. Sci. 116, 10681–10685 (2019)

    Article  Google Scholar 

  7. Rietkerk, M., Bastiaansen, R., Banerjee, S., et al.: Evasion of tipping in complex systems through spatial pattern formation. Science 374, eabj0359 (2021)

    Article  Google Scholar 

  8. Higgins, S., Scheiter, S.: Atmospheric CO\(_2\) forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012)

    Article  Google Scholar 

  9. Baudena, M., Dekker, S., van Bodegom, P., et al.: Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models. Biogeosciences 12, 1833–1848 (2015)

    Article  Google Scholar 

  10. Santos, A., Quesada, C., Silva, G., et al.: High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian cerrado. Glob. Change Biol. 10, 877–885 (2004)

    Article  Google Scholar 

  11. Tamen, A., Tewa, J., Couterony, P., Bowong, S., Dumont, Y.: A generic modeling of fire impact in a tree-grass savanna model. Biomath 3, 1407191 (2014)

    MathSciNet  Google Scholar 

  12. Djeumen, I., Dumont, Y., Doizy, A., Doizy, A., Couteron, P.: A minimalistic model of vegetation physiognomies in the savanna biome. Ecol. Model. 440, 109381 (2021)

    Article  Google Scholar 

  13. Yatat, V., Couteron, P., Tewa, J., Bowong, S., Dumont, Y.: An impulsive modelling framework of fire occurrence in a size-structured model of tree-grass interactions for savanna ecosystems. J. Math. Biol. 74, 1425–1482 (2017)

    Article  MathSciNet  Google Scholar 

  14. Alexandrov, D., Bashkirtseva, I., Crucifix, M., Ryashko, L.: Nonlinear climate dynamics: from deterministic behaviour to stochastic excitability and chaos. Phys. Rep. 902, 1–60 (2021)

    Article  MathSciNet  Google Scholar 

  15. Bauden, M., D’Andrea, F., Provenzale, A.: An idealized model for tree-grass coexistence in savannas: the role of life stage structure and fire disturbances. J. Ecol. 98, 74–80 (2010)

  16. Beckage, B., Gross, L., Platt, W.: Grass feedbacks on fire stabilize savannas. Ecol. Model. 222, 2227–2233 (2011)

    Article  Google Scholar 

  17. Bachar, M., Batzel, J., Ditlevsen, S.: Stochastic Biomathematical Models: with Applications to Neuronal Modeling. Springer, New York (2012)

    Google Scholar 

  18. Braumann, C.: Variable effort harvesting models in random environments: generalization to densitydependent noise intensities. Math. Biosci. 177 &178, 229–245 (2002)

    Article  Google Scholar 

  19. Liu, M., Bai, C.: Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016)

    Article  MathSciNet  Google Scholar 

  20. Evans, S.N., Ralph, P.L., Schreiber, S.J., Sen, A.: Stochastic population growth in spatially heterogeneous environments. J. Math. Biol. 66, 423–476 (2013)

    Article  MathSciNet  Google Scholar 

  21. Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zhao, S., Yuan, S., Wang, H.: Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation. J. Differ. Equs. 268, 5113–5139 (2020)

    Article  MathSciNet  Google Scholar 

  23. Durrett, R.: Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton (1996)

    Google Scholar 

  24. Takeuchi, Y., Du, N.H., Hieu, N.T., Sato, K.: Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment. J. Math. Anal. Appl. 323, 938–957 (2006)

    Article  MathSciNet  Google Scholar 

  25. Li, X.Y., Jiang, D.Q., Mao, X.R.: Population dynamical behavior of Lotka-Volterra system under regime switching. J. Comput. Appl. Math. 232, 427–448 (2009)

    Article  MathSciNet  Google Scholar 

  26. Bao, J., Shao, J.: Permanence and extinction of regime switching predator-prey models. SIAM J. Math. Anal. 48, 725–739 (2016)

    Article  MathSciNet  Google Scholar 

  27. Nguyen, D.H., Yin, G., Zhu, C.: Certain properties related to well posedness of switching diffusions. Stoch. Process. Appl. 127, 3135–3158 (2017)

    Article  MathSciNet  Google Scholar 

  28. Menaut, J., Cesar, J.: Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60, 1197–1210 (1979)

    Article  Google Scholar 

  29. de Ridder, N., Stroosnijder, L., Cisse, A.M.: La productivite des paturages Saheliens: une etude des sols, des vegetations et de l’exploitation de cette ressource naturelle. Pudoc, (1982). https://edepot.wur.nl/529775

  30. Breman, H., Kessler, J.: Woody Plants in Agro-ecosystems of Semi-arid Regions: with an Emphasis on the Sahelian Countries. Springer, Berlin (1995)

    Book  Google Scholar 

  31. Van de Vijver, C., Foley, C.A., Olff, H.: Changes in the woody component of an East African savanna during 25 years. J. Trop. Ecol. 15, 545–564 (1999)

    Article  Google Scholar 

  32. Accatino, F., De Michele, C., Vezzoli, R., Donzelli, D., Scholes, R.J.: Tree-grass coexistence in savanna: interactions of rain and fire. J. Theor. Biol. 267, 235–242 (2010)

    Article  Google Scholar 

  33. Higgins, S.I., Bond, W.J., Trollope, W.S.W.: Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J. Ecol. 88, 213–229 (2000)

    Article  Google Scholar 

  34. Van Langevelde, F., Van De Vijver, C., Kumar, L., et al.: Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84, 337–350 (2003)

    Article  Google Scholar 

  35. Hening, A., Nguyen, D.H.: Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Probab. 28, 1893–1942 (2018)

    Article  MathSciNet  Google Scholar 

  36. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    Book  Google Scholar 

  37. Yin, G., Zhu, C.: Hybrid Switching Diffusions: Properties and Applications. Springer, New York (2010)

    Book  Google Scholar 

  38. Tuominen, P., Tweedie, R.L.: Exponential decay and ergodicity of general Markov processes and their discrete skeletons. Adv. Appl. Prob. 11, 784–803 (1979)

    Article  MathSciNet  Google Scholar 

  39. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, New York (1989)

Download references

Acknowledgements

The authors are very grateful to the editor and anonymous referees for their careful reading and valuable comments.

Funding

Meng Liu thanks the Natural Science Foundation of Jiangsu Province (No. BK20231361), “333 Project" Research Foundation, “333 High-level Personnel Training Project" of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding author

Correspondence to Meng Liu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, M. Effects of stochastic perturbations on the tree–grass coexistence in savannas. Nonlinear Dyn 112, 1529–1548 (2024). https://doi.org/10.1007/s11071-023-08995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08995-6

Keywords

Mathematics Subject Classification

Navigation