Skip to main content
Log in

Investigation of chatter suppression by using rotating composite boring bar CNT-filled based on a modified nonlinear dynamical model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Compared with traditional linear models, the nonlinear model of boring can profoundly reveal the physical mechanism and mathematical laws of chatter occurrence, and has more rich scientific connotations. The nonlinear kinematic equations of the composite boring system containing carbon nanomaterials (CNMs) are derived by utilizing the energy method, which is taken to be the entry point for this paper. First of all, the basic mechanical parameters for the composite boring bar CNMs-embedded are derived based on the Halpin–Tsai Model (HTM) and the Rules of Mixture (ROM). From the perspective of continuous distribution, the mathematical expressions of kinetic and potential energy of the rotating boring bar are proposed by introducing the nonlinear strain. The specific and detailed nonlinear dynamic equations of the boring system are obtained using the extended Hamilton’s principle by considering the non-conservative virtual work consists of the nonlinear regenerative cutting and the damping force resulting from the viscoelastic and hysteretic damping of composite. Next, the nonlinear equations above are numerically decomposed and simplified using the general Galerkin method combined with modal expansion. The compact nonlinear equations are solved by the Multi-scale method and the primary and super-harmonic resonance solutions are obtained for the forward and backward modes, respectively. Then, the above nonlinear theoretical models are validated with published literature. Finally, the effects of CNMs, carbon fibers, cutting technological parameters on chatter amplitude as well as the unstable zone (curves) are investigated. The conclusions obtained confirm that the nonlinear theoretical model of the boring system proposed in present paper can effectively predict the complex relationships between various parameters within the boring system and provide theoretical guidance for the design of the composite cutter bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Munoa, J., Beudaert, X., Dombovari, Z., Altintas, Y., Budak, E., Brecher, C., Stépán, G.: Chatter suppression techniques in the metal cutting. CIRP Ann. Manuf. Technol. 65(2), 785–808 (2016). https://doi.org/10.1016/j.cirp.2016.06.004

    Article  Google Scholar 

  2. Zhu, L.D., Liu, C.F.: Recent progress of chatter prediction, detection and suppression in milling. Mech. Syst. Signal. Pr. 143(9), 106840-1–37 (2020). https://doi.org/10.1016/j.ymssp.2020.106840

    Article  Google Scholar 

  3. Wang, W.K., Wan, M., Zhang, W.H., Yang, Y.: Chatter detection methods in the machining processes: a review. J. Manuf. Process. 77(5), 240–259 (2022). https://doi.org/10.1016/j.jmapro.2022.03.018

    Article  Google Scholar 

  4. Lee, D.G., Suh, N.P.: Manufacturing and testing of chatter free boring bars. CIRP Ann. Manuf. Technol. 37(1), 365–368 (1988). https://doi.org/10.1016/S0007-8506(07)61655-2

    Article  Google Scholar 

  5. Lee, D.G., Hwang, H.Y., Kim, J.K.: Design and manufacture of a carbon fiber epoxy rotating boring bar. Compos. Struct. 60(1), 115–124 (2003). https://doi.org/10.1016/S0263-8223(02)00287-8

    Article  Google Scholar 

  6. Ghorbani, S., Rogov, V.A., Carluccio, A., Belov, P.S.: The effect of composite boring bars on vibration in machining process. Int. J. Adv. Manuf. Tech. 105, 1157–1174 (2019). https://doi.org/10.1007/s00170-019-04298-6

    Article  Google Scholar 

  7. Thorenz, B., Friedrich, M., Westermann, H.H., Döpper, F.: Evaluation of the influence of different inner cores on the dynamic behavior of boring bars. Proc. CIRP 81, 1171–1176 (2019). https://doi.org/10.1016/j.procir.2019.03.287

    Article  Google Scholar 

  8. Waydande, S., Mahajan, D.A., Gajjal, S.Y.: A review on vibration attenuation of boring bar using passive dampers. Int. J. Emerg. Technol. Adv. Eng. 4(4), 117–122 (2014). https://doi.org/10.15623/ijret.2015.0407020

    Article  Google Scholar 

  9. Nagano, S., Koizumi, T., Fujii, T., Tsujiuchi, N., Ueda, H., Steel, K.: Development of a composite boring bar. Compos. Struct. 38(1–4), 531–539 (1997). https://doi.org/10.1016/s0263-8223(97)00089-5

    Article  Google Scholar 

  10. Song, Q.H., Shi, J.H., Liu, Z.Q., Wan, Y., Xia, F.: Boring bar with constrained layer damper for improving process stability. Int. J. Adv. Manuf. Technol. 83(9–12), 1951–1966 (2016). https://doi.org/10.1007/s00170-015-7670-5

    Article  Google Scholar 

  11. Liu, Y., Liu, Z.Q., Song, Q.H., Wang, B.: Development of constrained layer damping tool-holder to improve chatter stability in end milling. Int. J. Mech. Sci. 117(10), 299–308 (2016). https://doi.org/10.1016/j.ijmecsci.2016.09.003

    Article  Google Scholar 

  12. Zhang, Y.H., Ren, Y.S., Tian, J.S., Ma, J.M.: Chatter stability of the constrained layer damping composite boring bar in cutting process. J. Vib. Control 25(16), 2204–2214 (2019). https://doi.org/10.1177/1077546319852240

    Article  MathSciNet  Google Scholar 

  13. Zhang, J.F., Wang, H., Ren, Y.S., Feng, C., Zhang, C.J.: Chatter and stability analysis of the slender composite boring bar with constrained damping Layer. Appl. Sci. 10(13), 1–19 (2020). https://doi.org/10.3390/app10134537

    Article  Google Scholar 

  14. Yuvaraju, B.A.G., Nanda, B.K., Srinivas, J.: Investigation of stability in internal turning using a boring bar with a passive constrained layer damping. FME Trans. 49(2), 384–394 (2021). https://doi.org/10.5937/fme2102384Y

    Article  Google Scholar 

  15. Wang, J., Wu, F.H., Han, Y.L., Sun, D.X.: Boring bar design with laminar composite structure and research on properties. Chin. Mech. Eng. 24(6), 711–715 (2013). https://doi.org/10.3969/j.issn.1004-132X.2013.06

    Article  Google Scholar 

  16. Wang, J., Wang, J.C., Wu, F.H., Zhou, Y., Bai, H.: Research of visco-elastic damping anti-vibration grinding wheel spindle with composite structure. J. Mech. Eng. 50(15), 192–197 (2014). https://doi.org/10.3901/JME.2014.15.192

    Article  Google Scholar 

  17. Ma, J.M., Ren, Y.S.: Free vibration and chatter stability of a rotating thin-walled composite bar. Adv. Mech. Eng. 10(9), 1–10 (2018). https://doi.org/10.1177/1687814018798265

    Article  Google Scholar 

  18. Ma, J.M., Xu, J.F., Ren, Y.S.: Analysis on free vibration and stability of rotating composite milling bar with large aspect ratio. Appl. Sci. 10(10), 3557-1–17 (2020). https://doi.org/10.3390/app10103557

    Article  Google Scholar 

  19. Ma, J.M., Xu, J.F., Li, L.F., Liu, X.G., Gao, M.: Analysis of cutting stability of a composite variable-section boring bar with a large length-to-diameter ratio considering internal damping. Mater. 15(15), 5465-1–22 (2022). https://doi.org/10.3390/ma15155465

    Article  Google Scholar 

  20. Kim, W., Argento, A., Scott, R.A.: Forced vibration and dynamic stability of a rotating tapered composite timoshenko shaft: Bending motions in end-milling operations. J. Sound Vib. 246(4), 583–600 (2001). https://doi.org/10.1006/jsvi.2000.3521

    Article  Google Scholar 

  21. Ren, Y.S., Zhang, Y.H.: Investigation of chatter stability of cutting process with a rotating tapered cutter bar considering internal and external damping. Int. J. Adv. Manuf. Tech. 107(3–4), 1755–1771 (2020). https://doi.org/10.1007/s00170-020-05049-8

    Article  Google Scholar 

  22. Ren, Y.S., Zhang, Y.H., Zhang, J.F.: Analytical instability of milling with rotating tapered composite tool considering internal damping. Eng. Mech. (Online). https://doi.org/10.6052/j.issn.1000-4750.2022.02.0197

  23. Zhang, Y.H., Ren, Y.S., Zhang, J.F.: Stability analysis of cutting process with internally damped rotating tapered composite cutter bar. Math. Probl. Eng. 2020, 1–23 (2020). https://doi.org/10.1155/2020/2587820

    Article  MathSciNet  MATH  Google Scholar 

  24. Zorzi, E.S., Nelson, H.D.: Finite element simulation of rotor bearing systems with internal damping. Trans. ASME J. Eng. Power 99, 71–76 (1977). https://doi.org/10.1115/1.3446254

    Article  Google Scholar 

  25. Arumugam, A.B., Rajamohan, V., Bandaru, N., Edwin, S.P., Kumbhar, S.G.: Vibration analysis of a carbon nanotube reinforced uniform and tapered composite beams. Arch. Acoust. 44(2), 309–320 (2019). https://doi.org/10.24425/aoa.2019.128494

    Article  Google Scholar 

  26. DeValve, C., Pitchumani, R.: Analysis of vibration damping in a rotating composite beam with embedded carbon nanotubes. Compos. Struct. 110(4), 289–296 (2014). https://doi.org/10.1016/j.compstruct.2013.12.007

    Article  Google Scholar 

  27. Thomas, B., Roy, T.: Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures. J. Vib. Control 23(11), 1711–1738 (2015). https://doi.org/10.1177/1077546315599680

    Article  Google Scholar 

  28. Heydarpour, Y., Malekzadeh, P.: Dynamic stability of rotating FG-CNTRC cylindrical shells under combined static and periodic axial loads. Int. J. Struct. Stab. Dyn. 18(12), 1850151-1–29 (2018). https://doi.org/10.1142/s0219455418501511

    Article  MathSciNet  Google Scholar 

  29. Ansari, R., Torabi, J., Shakouri, A.H.: Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy. Aerosp. Sci. Technol. 60(1), 152–161 (2017). https://doi.org/10.1016/j.ast.2016.11.004

    Article  Google Scholar 

  30. Alawy, A., Abdlghany, M., Zakaria Wafy, T., Hassan, A.: Effect of functionalized multi-wall carbon nanotubes/Biresin CR82 epoxy nanocomposite on vibration attenuation of aluminum plate. J. Vib. Control 27(15–16), 1910–1919 (2021). https://doi.org/10.1177/1077546320950518

    Article  Google Scholar 

  31. Udatha, P., Sekhar, A.S., Velmurugan, R.: The effect of CNT to enhance the dynamic properties of hybrid composite tube shafts. Mech. Adv. Mater. Struct. 26(1), 88–92 (2019). https://doi.org/10.1080/15376494.2018.1534172

    Article  Google Scholar 

  32. Hong, M.K., Choi, W.K., Park, J.H., Kuk, Y.S., Kim, B.S., Seo, M.K.: Relationship between functionalized MWCNT and damping properties of MWCNT/CFRP composites for shaft. J. Nanosci. Nanotechnol. 20(11), 6862–6870 (2020). https://doi.org/10.1166/jnn.2020.18810

    Article  Google Scholar 

  33. Zhang, J.F., Tong, Z.F., Ren, Y.S., Feng, C., Cao, X.L., Zhong, P.S.: Dynamical stability analysis of rotating composite cutter bar with nanocarbon materials. Int. J. Struct. Stab. Dyn. 23(9), 2350102-1–30 (2023). https://doi.org/10.1142/S021945542350102X

    Article  MathSciNet  Google Scholar 

  34. Fu, Q.L., Lundin, D., Nicolescu, C.M.: Anti-vibration engineering in internal turning using a carbon nanocomposite damping coating produced by PECVD process. J. Mater. Eng. Perform. 23(2), 506–517 (2014). https://doi.org/10.1007/s11665-013-0781-y

    Article  Google Scholar 

  35. Yuvaraju, B.A.G., Nanda, B.K., Srinivas, J.: Optimal cutting state predictions in internal turning operation with nano-SiC/GFRE composite layered boring tools. Int. J. Mach. Mach. Mater. 23(1), 1–20 (2021). https://doi.org/10.1504/IJMMM.2021.112714

    Article  Google Scholar 

  36. Hanna, N.H., Tobias, S.A.: A theory of nonlinear regenerative chatter. J. Eng. Ind. 96(1), 247–255 (1974). https://doi.org/10.1115/1.3438305

    Article  Google Scholar 

  37. Vela-Martínez, L., Jáuregui-Correa, C., González-Brambila, O.M., Herrera-Ruiz, G., Lozano-Guzmán, A.: Instability conditions due to structural nonlinearities in regenerative chatter. Nonlinear Dyn. 56(4), 415–427 (2009). https://doi.org/10.1007/s11071-008-9411-x

    Article  MATH  Google Scholar 

  38. Deshpande, N., Fofana, M.S.: Nonlinear regenerative chatter in turning. Robot. Cim-Int. Manuf. 17(1–2), 107–112 (2001). https://doi.org/10.1016/s0736-5845(00)00043-0

    Article  Google Scholar 

  39. Stépán, G., Insperger, T., Szalai, R.: Delay, parametric excitation, and the nonlinear dynamics of cutting processes. Int. J. Bifurcat. Chaos 15(9), 2783–2798 (2005). https://doi.org/10.1142/S0218127405013642

    Article  MathSciNet  MATH  Google Scholar 

  40. Moradi, H., Movahhedy, M.R., Vossoughi, G.: Bifurcation analysis of milling process with tool wear and process damping: regenerative chatter with primary resonance. Nonlinear Dyn. 70(1), 481–509 (2012). https://doi.org/10.1007/s11071-012-0470-7

    Article  MathSciNet  Google Scholar 

  41. Moradi, H., Vossoughi, G., Movahhedy, M.R., Ahmadian, M.T.: Forced vibration analysis of the milling process with structural nonlinearity, internal resonance, tool wear and process damping effects. Int. J. Non-Linear Mech. 54, 22–34 (2013). https://doi.org/10.1016/j.ijnonlinmec.2013.02.005

    Article  Google Scholar 

  42. Jung, J., Ngo, C., Son, D., Seok, J.: Nonlinear modeling and dynamic simulation using bifurcation and stability analyses of regenerative chatter of ball-end milling process. Math. Probl. Eng. 2016, 4368680-1–16 (2016). https://doi.org/10.1155/2016/4368680

    Article  MathSciNet  MATH  Google Scholar 

  43. Jalili, M.M., Hesabi, J., Abootorabi, M.M.: Simulation of forced vibration in milling process considering gyroscopic moment and rotary inertia. Int. J. Adv. Manuf. Technol. 89(9–12), 2821–2836 (2017). https://doi.org/10.1007/s00170-016-9618-9

    Article  Google Scholar 

  44. Mokhtari, A., Jalili, M.M., Mazidi, A.: Study on frequency response and bifurcation analyses under primary resonance conditions of micro-milling operations. Appl. Math. Model. 87, 404–429 (2020). https://doi.org/10.1016/j.apm.2020.06.016

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, B.L., Ren, Y.S.: Nonlinear dynamic analysis of the cutting process of a non-extensible composite boring bar. Shock. Vib. 2020(8), 5971540-1–13 (2020). https://doi.org/10.1155/2020/5971540

    Article  Google Scholar 

  46. Yao, D.H., Ren, Y.S., Zhang, Y.H., Ma, B.L.: Nonlinear dynamics of cutting process considering higher-order deformation of composite cutting tool. Shock. Vib. 2021, 8699218-1–23 (2021). https://doi.org/10.1155/2021/8699218

    Article  Google Scholar 

  47. Ren, Y.S., Yao, D.H.: Forced vibration in cutting process considering the nonlinear curvature and inertia of a rotating composite cutter bar. Math. Probl. Eng. 2020, 2463136-1–19 (2020). https://doi.org/10.1155/2020/2463136

    Article  MathSciNet  MATH  Google Scholar 

  48. Arab, S.B., Rodrigues, J.D., Bouaziz, S., Haddar, M.: Stability analysis of internally damped rotating composite shafts using a finite element formulation. CR Mecan 346(4), 291–307 (2018). https://doi.org/10.1016/j.crme.2018.01.002

    Article  Google Scholar 

  49. Halpin, J.C.: Stiffiness and expansion estimates for oriental short fiber composites. J. Compos. Mater. 3(4), 732–734 (1969). https://doi.org/10.1177/002199836900300419

    Article  Google Scholar 

  50. Melanson, J., Zu, J.W.: Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions. J. Vib. Acoust. 120(3), 776–783 (1998). https://doi.org/10.1115/1.2893897

    Article  Google Scholar 

  51. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009). https://doi.org/10.1021/nn9010472

    Article  Google Scholar 

  52. Ubaid, A.M., Dweiri, F.T., Ojiako, U.: Organizational excellence methodologies (OEMs): a systematic literature review. Int. J. Syst. Assur. Eng. Manag. 11(6), 1395–1432 (2020). https://doi.org/10.1007/s13198-020-01017-3

    Article  Google Scholar 

  53. Gupta, V., Rathi, N.: Various objects detection using Bayesian theory. In: Proceedings of the International Conference on Computer Applications-Computer Applications-II. Research Publishing Services (2010). https://doi.org/10.3850/978-981-08-7304-2-1476

  54. Arcos-Medina, G., Mauricio, D.: Aspects of software quality applied to the process of agile software development: a systematic literature review. Int. J. Syst. Assur. Eng. Manag. 10(5), 867–897 (2019). https://doi.org/10.1007/s13198-019-00840-7

    Article  Google Scholar 

  55. Zhang, Z.P., Wang, Z.L.: Design of financial big data audit model based on artificial neural network. Int. J. Syst. Assur. Eng. Manag. (2021) (online). https://doi.org/10.1007/s13198-021-01258-w

  56. Li, C.-W., Chao, Y.-Y.: The effect of auditing assurance levels on accounting conservatism: evidence from Taiwan. Int. J. Syst. Assur. Eng. Manag. 11(1), 64–76 (2020). https://doi.org/10.1007/s13198-019-00925-3

    Article  Google Scholar 

  57. Alrae, R., Nasir, Q., Talib, M.A.: Developing house of information quality framework for IoT systems. Int. J. Syst. Assur. Eng. Manag. 11(6), 1294–1313 (2020). https://doi.org/10.1007/s13198-020-00989-6

    Article  Google Scholar 

  58. Gupta, V., Mittal, M., Mittal, V.: FrWT-PPCA-based r-peak detection for improved management of healthcare system. IETE J. Res. (2021). (online). https://doi.org/10.1080/03772063.2021.1982412

  59. Gupta, V., Mittal, M., Mittal, V.: A novel FrWT based arrhythmia detection in ECG signal using YWARA and PCA. Wirel. Pers. Commun. 124(2), 1229–1246 (2022). https://doi.org/10.1007/s11277-021-09403-1

    Article  Google Scholar 

  60. Gupta, V., Saxena, N.K., Kanungo, A., Kumar, P., Diwania, S.: PCA as an effective tool for the detection of r-peaks in an ECG signal processing. Int. J. Syst. Assur. Eng. Manag. 13(5), 2391–2403 (2022). https://doi.org/10.1007/s13198-022-01650-0

    Article  Google Scholar 

  61. Gupta, V., Mittal, M., Mittal, V., Chaturvedi, Y.: Detection of r-peaks using fractional Fourier transform and principal component analysis. J. Ambient Intell. Hum. Comput. 13(2), 961–972 (2022). https://doi.org/10.1007/s12652-021-03484-3

    Article  Google Scholar 

  62. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K., Chaturvedi, Y.: Nonlinear technique-based ECG signal analysis for improved healthcare systems. In: Algorithms for Intelligent Systems, pp. 247–255. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-3246-4_20

  63. Gupta, V., Mittal, M., Mittal, V.: A simplistic and novel technique for ECG signal pre-processing. IETE J. Res. (2022). https://doi.org/10.1080/03772063.2022.2135622

  64. Gupta, V.: Application of chaos theory for arrhythmia detection in pathological databases. Int. J. Med. Eng. Inform. 15(2), 191 (2023). https://doi.org/10.1504/IJMEI.2023.129353

    Article  Google Scholar 

  65. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K.: Spectrogram as an emerging tool in ECG signal processing. In: Recent Advances in Manufacturing, Automation, Design and Energy Technologies, pp. 407–414. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4222-7_47

  66. Gupta, V., Mittal, M., Mittal, V., Diwania, S., Saxena, N.K.: ECG signal analysis based on the spectrogram and spider monkey optimisation technique. J. Inst. Eng. (India) Ser. B 104(1), 153–164 (2023). https://doi.org/10.1007/s40031-022-00831-6

    Article  Google Scholar 

  67. Gupta, V., Mittal, M., Mittal, V., Gupta, A.: An efficient AR modelling-based electrocardiogram signal analysis for health informatics. Int. J. Med. Eng. Inform. 14(1), 74–89 (2022). https://doi.org/10.1504/IJMEI.2022.119314

    Article  Google Scholar 

  68. Gupta, V.: Wavelet transform and vector machines as emerging tools for computational medicine. J. Ambient Intell. Hum. Comput. 14(4), 4595–4605 (2023). https://doi.org/10.1007/s12652-023-04582-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11672166) and the Natural Science Foundation of Shandong Province (Grant no. ZR202103070107).

Funding

The funding was provided by the National Natural Science Foundation of China (Grant No. 11672166) and the Natural Science Foundation of Shandong Province (Grant No. ZR202103070107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfeng Zhang or Chao Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jia, J., Feng, C. et al. Investigation of chatter suppression by using rotating composite boring bar CNT-filled based on a modified nonlinear dynamical model. Nonlinear Dyn 111, 20735–20770 (2023). https://doi.org/10.1007/s11071-023-08986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08986-7

Keywords

Navigation