Skip to main content
Log in

Adaptive global prescribed performance control for rigid spacecraft subject to angular velocity constraints and input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates the prescribed performance attitude tracking control issue of rigid spacecraft subject to angular velocity constraints, input saturation, actuator failures, external disturbances and inertia uncertainty. With the aid of a shifting function, we propose the global asymmetrical prescribed performance functions that guarantee the fixed-time convergence of the tracking error, while simultaneously reducing the overshoot and eliminating the dependence on the initial system conditions. To address the fragility problem inherent in the traditional prescribed performance control, a fragility-preventing coefficient is devised to enable the flexible readjustment of the performance boundaries under the different conditions of input saturation and disturbances. Then, a transformation function is introduced to handle attitude performance constraints and angular velocity limits. Moreover, the neural network is employed to estimate the unknown function. Finally, both stability analysis and numerical simulations are provided to manifest the effectiveness and advantages of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Wen, T., Zeng, X., Circi, C., Gao, Y.: Hop reachable domain on irregularly shaped asteroids. J. Guid. Control Dyn. 43, 1269–1283 (2020)

    Google Scholar 

  2. Gao, Y., Li, D., Ge, S.S.: Time-synchronized tracking control for 6-dof spacecraft in rendezvous and docking. IEEE Trans. Aerosp. Electron. Syst. 58(3), 1676–1691 (2022)

    Google Scholar 

  3. Liu, G.P., Zhang, S.: A survey on formation control of small satellites. Proc. IEEE. 106(3), 440–457 (2018)

    Google Scholar 

  4. Wie, B., Lu, J.: Feedback control logic for spacecraft eigenaxis rotations under slew rate and control constraints. Aerosp. Electron. Syst. 18(6), 1372–1379 (1995)

    MATH  Google Scholar 

  5. Yang, Y.: Singularity-free model predictive spacecraft attitude regulation using a variable-speed control moment gyroscope model. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1511–1518 (2018)

    Google Scholar 

  6. Zhang, J., Ma, K., Meng, G., Tian, S.: Spacecraft maneuvers via singularity-avoidance of control moment gyros based on dual-mode model predictive control. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2546–2559 (2015)

    Google Scholar 

  7. Yu, X., Zhu, Y., Qiao, J., Guo, L.: Antidisturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 57(5), 3393–3404 (2021)

    Google Scholar 

  8. Wen, G., Li, B., Niu, B.: Optimized backstepping control using reinforcement learning of observer-critic-actor architecture based on fuzzy system for a class of nonlinear strict-feedback systems. IEEE Trans. Fuzzy Syst. 30(10), 4322–4335 (2022)

    Google Scholar 

  9. Yang, Y., Tan, J., Yue, D., Xie, X., Yue, W.: Observer-based containment control for a class of nonlinear multiagent systems with uncertainties. IEEE Trans. Syst. Man Cybern. 51(1), 588–600 (2018)

    Google Scholar 

  10. Chen, X., Zhao, L.: Observer-based finite-time attitude containment control of multiple spacecraft systems. IEEE Trans. Circuits Syst. II-Express Briefs 68(4), 1273–1277 (2020)

    Google Scholar 

  11. Yang, Y., Tan, J., Yue, D., Xie, X., Yue, W.: Observer-based containment control for a class of nonlinear multiagent systems with uncertainties. IEEE Trans. Aerosp. Electron. Syst. 51(1), 588–600 (2018)

    Google Scholar 

  12. Esmaeilzadeh, S.M., Golestani, M., Mobayen, S.: Chattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraft. Int. J. Control Autom. Syst. 19(2), 767–776 (2021)

    MATH  Google Scholar 

  13. Zhang, X., Zong, Q., Dou, L., Tian, B., Liu, W.: Finite-time attitude maneuvering and vibration suppression of flexible spacecraft. J. Frankl. Inst.-Eng. Appl. Math. 357(16), 11604–11628 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Yan, S., Gu, Z., Park, J.H., Xie, X.: A delay-kernel-dependent approach to saturated control of linear systems with mixed delays. Automatica 152, 110984 (2023)

    MathSciNet  MATH  Google Scholar 

  15. Chen, G., Xia, J., Park, J.H., Shen, H., Zhuang, G.: Robust sampled-data control for switched complex dynamical networks with actuators saturation. IEEE T. Cybern. 52(10), 10909–10923 (2021)

    Google Scholar 

  16. Liu, G., Park, J.H., Xu, H., Hua, C.: Reduced-order observer-based output-feedback tracking control for nonlinear time-delay systems with global prescribed performance. IEEE T, Cybern (2022)

  17. Yan, S., Gu, Z., Park, J.H., Xie, X.: Synchronization of delayed fuzzy neural networks with probabilistic communication delay and its application to image encryption. IEEE Trans, Fuzzy Syst (2022)

  18. Zhang, Z., Shi, Y., Yan, W.: A novel attitude-tracking control for spacecraft networks with input delays. IEEE Trans. Control Syst. Technol. 29(3), 1035–1047 (2020)

    Google Scholar 

  19. Li, A., Liu, M., Cao, X., Liu, R.: Adaptive quantized sliding mode attitude tracking control for flexible spacecraft with input dead-zone via Takagi-Sugeno fuzzy approach. Inf. Sci. 587, 746–773 (2022)

    Google Scholar 

  20. Zhou, N., Cheng, X., Xia, Y., Liu, Y.: Fully adaptive-gain-based intelligent failure-tolerant control for spacecraft attitude stabilization under actuator saturation. IEEE T. Cybern. 52(1), 344–356 (2020)

    Google Scholar 

  21. Zhang, X., Zong, Q., Dou, L., Zhang, R., Tian, B., Liu, W.: Finite-time distributed attitude synchronization for multiple spacecraft with angular velocity and input constraints. IEEE Trans. Control Syst. Technol. 30(4), 1612–1624 (2021)

    Google Scholar 

  22. Zhou, Z.G., Zhou, D., Zhang, Y., Chen, X., Shi, X.N.: Event-triggered integral sliding mode controller for rigid spacecraft attitude tracking with angular velocity constraint. Int. J. Control. 95(12), 3283–3297 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Shao, X., Hu, Q., Zhu, Z.H., Zhang, Y.: Fault-tolerant reduced-attitude control for spacecraft constrained boresight reorientation. J. Guid. Control Dyn. 45(8), 1481–1495 (2022)

    Google Scholar 

  24. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Zhao, Z., Ahn, C.K.: Boundary output constrained control for a flexible beam system with prescribed performance. IEEE Trans. Syst. Man Cybern. 51(8), 4650–4658 (2019)

    Google Scholar 

  26. Zhang, J.X., Yang, G.H.: Event-triggered prescribed performance control for a class of unknown nonlinear systems. IEEE Trans. Syst. Man Cybern. 51(10), 6576–6586 (2020)

    Google Scholar 

  27. Cheng, F., Niu, B., Zhang, L., Chen, Z.: Prescribed performance-based low-computation adaptive tracking control for uncertain nonlinear systems with periodic disturbances. IEEE Trans. Circuits Syst. II-Express Briefs 69(11), 4414–4418 (2022)

    Google Scholar 

  28. Wang, J., Sun, L., Jiang, J.: Full-state prescribed performance pose tracking of space proximity operations with input saturation. Asian J. Control 25(2), 1350–1364 (2023)

    MathSciNet  Google Scholar 

  29. Zhang, J.X., Yang, G.H.: Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions. IEEE Trans. Autom. Control 62(12), 6529–6535 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Bu, X., Qi, Q., Jiang, B.: A simplified finite-time fuzzy neural controller with prescribed performance applied to waverider aircraft. IEEE Trans. Fuzzy Syst. 30(7), 2529–2537 (2021)

    Google Scholar 

  31. Niu, Z., Dai, M.Z., Gao, J., Zhang, C., Wu, J.: Prescribed performance spacecraft attitude tracking with disturbance observer: a performance-adjustable policy. Adv. Space Res. 70(8), 2357–2368 (2022)

    Google Scholar 

  32. Dong, H., Yang, X.: Finite-time prescribed performance control for space circumnavigation mission with input constraints and measurement uncertainties. IEEE Trans. Aerosp. Electron. Syst. 58(4), 3209–3222 (2022)

    Google Scholar 

  33. Yang, P., Su, Y.: Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators. IEEE-ASME Trans. Mechatron. 27(5), 3275–3285 (2021)

    Google Scholar 

  34. Sai, H., Xu, Z., Xia, C., Sun, X.: Approximate continuous fixed-time terminal sliding mode control with prescribed performance for uncertain robotic manipulators. Nonlinear Dyn. 110(1), 431–448 (2022)

    Google Scholar 

  35. Zhu, X., Ding, W., Zhang, T.: Command filter-based adaptive prescribed performance tracking control for uncertain pure-feedback nonlinear systems with full-state time-varying constraints. Int. J. Robust Nonlinear Control 31(11), 5312–5329 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Hu, Q., Chen, W., Guo, L., Biggs, J.D.: Adaptive fixed-time attitude tracking control of spacecraft with uncertainty-rejection capability. IEEE Trans. Syst. Man Cybern. -Syst. 52(7), 4634–4647 (2021)

    Google Scholar 

  37. Xiao, B., Hu, Q., Shi, P.: Attitude stabilization of spacecrafts under actuator saturation and partial loss of control effectiveness. IEEE Trans. Control Syst. Technol. 21(6), 2251–2263 (2013)

    Google Scholar 

  38. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20(6), 1605–1612 (2012)

    Google Scholar 

  39. Xiao, B., Hu, Q., Zhang, Y., Huo, X.: Fault-tolerant tracking control of spacecraft with attitude-only measurement under actuator failures. J. Guid. Control Dyn. 37(3), 838–849 (2014)

    Google Scholar 

  40. Su, Y., Shen, S.: Adaptive predefined-time prescribed performance control for spacecraft systems. Math. Biosci. Eng. 20(3), 5921–5948 (2023)

    MathSciNet  Google Scholar 

  41. Bu, X., Wu, X., Zhu, F., Huang, J., Ma, Z., Zhang, R.: Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors. ISA Trans. 59, 149–159 (2015)

  42. Li, Z., Wang, Y., Song, Y., Ao, W.: Global Consensus Tracking Control for High-Order Nonlinear Multiagent Systems With Prescribed Performance. IEEE T, Cybern (2022)

  43. Hua, C., Li, H., Li, K., Ding, W.: Low-computation tracking control of nonlinear systems with asymmetric full-state constraints and unknown control directions. IEEE Trans. Syst. Man Cybern. -Syst. (2022)

  44. Sun, L., Zheng, Z.: Saturated adaptive hierarchical fuzzy attitude-tracking control of rigid spacecraft with modeling and measurement uncertainties. IEEE Trans. Ind. Electron. 66(5), 3742–3751 (2018)

    Google Scholar 

  45. Cao, X., Shi, P., Li, Z., Liu, M.: Neural-network-based adaptive backstepping control with application to spacecraft attitude regulation. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4303–4313 (2017)

    Google Scholar 

  46. Xie, S., Tao, M., Chen, Q., Tao, L.: Neural-network-based adaptive finite-time output constraint control for rigid spacecrafts. Int. J. Robust Nonlinear Control 32(5), 2983–3000 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Golestani, M., Mobayen, S., ud Din, S., El-Sousy, F.F., Vu, M.T., Assawinchaichote, W.: Prescribed performance attitude stabilization of a rigid body under physical limitations. IEEE Trans. Aerosp. Electron. Syst. 58(5), 4147–4155 (2022)

    Google Scholar 

  48. Chen, G., Fan, C., Sun, J., Xia, J.: Mean square exponential stability analysis for Itô stochastic systems with aperiodic sampling and multiple time-delays. IEEE Trans. Autom. Control 67(5), 2473–2480 (2021)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation (NNSF) of China under Grants 61333008, 61603320, 61733017 and 61673327 and Xiamen Key Lab. Of Big Data Intelligent Analysis and Decision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoping Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Shen, S. Adaptive global prescribed performance control for rigid spacecraft subject to angular velocity constraints and input saturation. Nonlinear Dyn 111, 21691–21705 (2023). https://doi.org/10.1007/s11071-023-08979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08979-6

Keywords

Navigation