Skip to main content
Log in

Real-time trajectory planning for ship-mounted rotary cranes considering continuous sea wave disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The increasing use of ship-mounted rotary cranes in marine trade has complicated operations, as the varying rope length increases the system’s underactuation. Additionally, these cranes are often subject to wave disturbances during load transportation. This paper proposes a trajectory planning method based on disturbance observer to address these challenges. To begin, coordinate transformations are used to couple continuous yaw and roll disturbances with the original state variables, creating new state variables. A disturbance observer is then used to observe heave disturbance while combining the designed sway suppression trajectory with the reference trajectory to achieve precise positioning of the load and suppress the swaying angle. The stability of the proposed method is demonstrated through the use of theoretical techniques such as Lyapunov, LaSalle’s invariance principle, and Barbalat’s lemma. Furthermore, the effectiveness of the proposed approach is confirmed through experiments conducted on a constructed experimental platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Roy, S., et al.: An adaptive control framework for underactuated switched Euler–Lagrange systems. IEEE Trans. Autom. Control 67(8), 4202–4209 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ghommam, J., et al.: Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Trans. Control Syst. Technol. 14(6), 1150–1157 (2006)

    Article  Google Scholar 

  3. Park, C., et al.: Global solution for the optimal feedback control of the underactuated Heisenberg system. IEEE Trans. Autom. Control 53(11), 2638–2642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang, J., et al.: Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum. IEEE Trans. Control Syst. Technol. 23(6), 2400–2407 (2015)

    Article  Google Scholar 

  5. Jiang, J., Astolfi, A.: Stabilization of a class of underactuated nonlinear systems via underactuated back-stepping. IEEE Trans. Autom. Control 66(11), 5429–5435 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Da Silva Lima, G., Moreira Bessa, W.: Sliding mode control with Gaussian process regression for underactuated mechanical systems. Rev. IEEE Am. Lat. 20(6), 963–969 (2022)

    Google Scholar 

  7. Lu, B., Fang, Y.: Gain-adapting coupling control for a class of underactuated mechanical systems. Automatica 125, 109461 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gnucci, M., Marino, R.: Adaptive tracking control for underactuated mechanical systems with relative degree two. Automatica 129, 109633 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tian, Z., et al.: Swing suppression control in tower cranes with time-varying rope length using real-time modified trajectory planning. Autom. Constr. 132, 103954 (2021)

    Article  Google Scholar 

  10. Ouyang, H., Xu, X., Zhang, G.: Boom motion trajectory generation approach for load sway rejection in rotary cranes considering double-pendulum effect. Meas. Control 54(5–6), 924–934 (2021)

  11. Zhang, M., Jing, X., Zhu, Z.: Disturbance employment-based sliding mode control for 4-DOF tower crane systems. Mech. Syst. Signal Process. 161, 107946 (2021)

    Article  Google Scholar 

  12. Wu, Q., et al.: Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances. Mech. Syst. Signal Process. 158, 107756 (2021)

    Article  Google Scholar 

  13. La, V.D., Nguyen, K.T.: Combination of input shaping and radial spring-damper to reduce tridirectional vibration of crane payload. Mech. Syst. Signal Process. 116, 310–321 (2019)

    Article  Google Scholar 

  14. Maghsoudi, M.J., et al.: Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mech. Syst. Signal Process. 123, 466–482 (2019)

    Article  Google Scholar 

  15. Yang, L., Ouyang, H.: Precision-positioning adaptive controller for swing elimination in three-dimensional overhead cranes with distributed mass beams. ISA Trans. 127, 449–460 (2022)

    Article  Google Scholar 

  16. Ouyang, H., et al.: Adaptive tracking controller design for double-pendulum tower cranes. Mech. Mach. Theory 153, 103980 (2020)

    Article  Google Scholar 

  17. Wu, Q., et al.: Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams. Mech. Syst. Signal Process. 144, 106968 (2020)

    Article  Google Scholar 

  18. Maghsoudi, M.J., et al.: An optimal performance control scheme for a 3D crane. Mech. Syst. Signal Process. 66–67, 756–768 (2016)

    Article  Google Scholar 

  19. Qian, Y., Fang, Y., Lu, B.: Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances. Mech. Syst. Signal Process. 114, 556–570 (2019)

    Article  Google Scholar 

  20. Guo, B., Chen, Y.: Fuzzy robust fault-tolerant control for offshore ship-mounted crane system. Inf. Sci. 526, 119–132 (2020)

    Article  MATH  Google Scholar 

  21. Lu, B., et al.: Nonlinear antiswing control for offshore boom cranes subject to ship roll and heave disturbances. Autom. Constr. 131, 103843 (2021)

    Article  Google Scholar 

  22. Qian, Y., Fang, Y., Lu, B.: Adaptive repetitive learning control for an offshore boom crane. Automatica 82, 21–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, H., Sun, N.: An output feedback approach for regulation of 5-DOF offshore cranes with Ship Yaw and roll perturbations. IEEE Trans. Ind. Electron. 69(2), 1705–1716 (2022)

    Article  Google Scholar 

  24. Martin, I.A., Irani, R.A.: Dynamic modeling and self-tuning anti-sway control of a seven degree of freedom shipboard knuckle boom crane. Mech. Syst. Signal Process. 153, 107441 (2021)

    Article  Google Scholar 

  25. Yurchenko, D., Alevras, P.: Stability, control and reliability of a ship crane payload motion. Probab. Eng. Mech. 38, 173–179 (2014)

    Article  Google Scholar 

  26. Sun, N., et al.: Dynamic feedback antiswing control of shipboard cranes without velocity measurement: theory and hardware experiments. IEEE Trans. Ind. Inf. 15(5), 2879–2891 (2019)

  27. Wu, Y., et al.: New adaptive dynamic output feedback control of double-pendulum ship-mounted cranes with accurate gravitational compensation and constrained inputs. IEEE Trans. Ind. Electron. 69(9), 9196–9205 (2022)

    Article  Google Scholar 

  28. Tuan, L.A., et al.: Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash. Mech. Syst. Signal Process. 112, 233–250 (2018)

    Article  Google Scholar 

  29. Yang, T., et al.: Adaptive neural network output feedback control of uncertain underactuated systems with actuated and unactuated state constraints. IEEE Trans. Syst. Man Cybern. Syst. 52(11), 1–17 (2022)

  30. Sano, S., et al.: LMI approach to robust control of rotary cranes under load sway frequency variance. J. Syst. Design Dyn. 5(7), 1402–1417 (2012)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant 61703202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Xi.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The detailed elements in (1) are as follows:

$$\begin{aligned} M_s= & {} \left[ \begin{array}{ccccc} m_{11} &{} m_{12} &{} m_{13} &{} m_{14} &{}m_{15}\\ m_{21} &{} m_{22} &{} m_{23} &{} m_{24} &{}m_{25}\\ m_{31} &{} m_{32} &{} m_{33} &{} m_{34} &{}m_{35}\\ m_{41} &{} m_{42} &{} m_{43} &{} m_{44} &{}m_{45}\\ m_{51} &{} m_{52} &{} m_{53} &{} m_{54} &{}m_{55}\\ \end{array} \right] ,\\ C= & {} \left[ \begin{array}{ccccc} c_{11} &{} c_{12} &{} c_{13} &{} c_{14} &{} c_{15}\\ c_{21} &{} c_{22} &{} c_{23} &{} c_{24} &{} c_{25}\\ c_{31} &{} c_{32} &{} c_{33} &{} c_{34} &{} c_{35}\\ c_{41} &{} c_{42} &{} c_{43} &{} c_{44} &{} c_{45}\\ c_{51} &{} c_{52} &{} c_{53} &{} c_{54} &{} c_{55}\\ \end{array} \right] , G(q){=}\left[ \begin{array}{ccccc} g_{1}&g_{2}&g_{3}&g_{4}&g_{5} \end{array} \right] ^{T},\\ \tau= & {} \left[ \begin{array}{ccccc} \tau _{1}&\tau _{2}&\tau _{3}&0&0 \end{array} \right] ^{T}, \tau _f=\left[ \begin{array}{ccccc} \tau _{1f}&\tau _{2f}&\tau _{3f}&0&0 \end{array} \right] ^{T},\\ q= & {} \left[ \begin{array}{ccccc} q_{1} &{} q_{2} &{} q_{3} &{} q_{4} &{} q_{5} \\ \end{array} \right] ^{T}, d^*=\left[ \begin{array}{ccccc} d_1^*&d_2^*&d_3^*&d_4^*&d_5^*\end{array} \right] ^{T}, \\ \end{aligned}$$
$$\begin{aligned} {m_{11}}= & {} m{L^2} + \frac{1}{3}{M}{L^2}, {m_{12}} = mL{q_3}{S_1}{S_5},\\ {m_{13}}= & {} - mL{C_{1 - 4}}{C_5},{m_{14}} = mL{q_3}{S_{1 - 4}}{C_5}, \\ {m_{15}}= & {} mL{q_3}{C_{1 - 4}}{S_5},{m_{21}} = {m_{12}},\\ {m_{22}}= & {} \frac{1}{3}{M}{L^2}{C_1}^2\\{} & {} \quad + m{L^2}{C_1}^2 + m{q_3}^2{S_4}^2{C_5}^2 \\{} & {} \quad + m{q_3}^2{S_5}^2+ 2mL{q_3}{C_1}{S_4}{C_5},\\ {m_{23}}= & {} mL{C_1}{S_5}, {m_{24}} = - m{q_3}^2{C_4}{S_5}{C_5},\\ {m_{25}}= & {} m{q_3}^2{S_4}+ mL{q_3}{C_1}{C_5},\\ {m_{31}}= & {} {m_{13}}, {m_{32}} = {m_{23}}, {m_{33}} = m, \\ {m_{34}}= & {} 0, {m_{35}} = 0,{m_{41}} = {m_{14}}, \\ {m_{42}}= & {} {m_{24}}, {m_{43}} = {m_{34}},\\ {m_{44}}= & {} m{q_3}^2{C_5}^2, {m_{45}} = 0, \\ {m_{51}}= & {} {m_{15}}, {m_{52}} = {m_{25}},\\ {m_{53}}= & {} {m_{35}}, {m_{54}} = {m_{45}}, \\ {m_{55}}= & {} m{q_3}^2, {c_{11}} = 0, \\ {c_{12}}= & {} m{L^2}{S_1}{C_1}{{\dot{q}}_2}+ mL{q_3}{S_1}{S_4}{C_5}{{\dot{q}}_2}\\{} & {} \quad + \frac{1}{3}{M}{L^2}{S_1}{C_1}{{\dot{q}}_2} + mL{{\dot{q}}_3}{S_1}{S_5} \\{} & {} \quad + mL{q_3}{S_1}{C_5}{{\dot{q}}_5},\\ {c_{13}}= & {} mL{S_1}{S_5}{{\dot{q}}_2} - mL{S_{1 - 4}}{C_5}{{\dot{q}}_4} + mL{C_{1 - 4}}{S_5}{{\dot{q}}_5},\\ {c_{14}}= & {} mL{q_3}{C_{1 - 4}}{C_5}{{\dot{q}}_4}- mL{{\dot{q}}_3}{S_{1 - 4}}{C_5} \\{} & {} + mL{q_3}{S_{1 - 4}}{S_5}{{\dot{q}}_5},\\ {c_{15}}= & {} mL{q_3}{C_{1 - 4}}{C_5}{{\dot{q}}_5} + mL{q_3}{S_1}{C_5}{{\dot{q}}_2} \\{} & {} \quad + mL{{\dot{q}}_3}{C_{1 - 4}}{S_5} + mL{q_3}{S_{1 - 4}}{S_5}{{\dot{q}}_4}, \\ {c_{21}}= & {} -m{L^2}{S_1}{C_1}{{\dot{q}}_2}- mL{q_3}{S_1}{S_4}{C_5}{{\dot{q}}_2} \\{} & {} \quad +mL{q_3}{C_1}{C_5}{{\dot{q}}_1} - \frac{1}{3}{M}{L^2}{S_1}{C_1}{{\dot{q}}_2},\\ {c_{22}}= & {} - m{L^2}{S_1}{C_1}{{\dot{q}}_1} - \frac{1}{3}{M}{L^2}{S_1}{C_1}{{\dot{q}}_1}\\{} & {} \quad - mL{q_3}{S_1}{S_4}{C_5}{{\dot{q}}_1} + m{q_3}^2{S_4}{C_4}{C_5}^2{{\dot{q}}_4}\\{} & {} + mL{q_3}{C_1}{C_4}{C_5}{{\dot{q}}_4} +m{q_3}^2{C_4}^2{S_5}{C_5}{{\dot{q}}_5} \\{} & {} \quad - mL{q_3}{C_1}{S_4}{S_5}{{\dot{q}}_5}+ m{q_3}{{\dot{q}}_3}{S_4}^2{C_5}^2 \\{} & {} \quad + m{q_3}{{\dot{q}}_3}{S_5}^2 + mL{{\dot{q}}_3}{C_1}{S_4}{C_5},\\ {c_{23}}= & {} m{q_3}{{\dot{q}}_2}{S_4}^2{C_5}^2+ m{q_3}{{\dot{q}}_2}{S_5}^2 \\{} & {} \quad + mL{C_1}{S_4}{C_5}{{\dot{q}}_2} - m{q_3}{C_4}{S_5}{C_5}{{\dot{q}}_4} \\{} & {} \quad + mL{C_1}{C_5}{{\dot{q}}_5} + m{q_3}{S_4}{{\dot{q}}_5},\\ {c_{24}}= & {} m{q_3}^2{S_4}{S_5}{C_5}{{\dot{q}}_4}+ m{q_3}^2{S_4}{C_4}{C_5}^2{{\dot{q}}_2} \\{} & {} + mL{q_3}{C_1}{C_4}{C_5}{{\dot{q}}_2}+ m{q_3}^2{C_4}{S_5}^2{{\dot{q}}_5}\\{} & {} \quad - m{q_3}{{\dot{q}}_3}{C_4}{S_5}{C_5},\\ {c_{25}}= & {} - mL{q_3}{C_1}{S_5}{{\dot{q}}_5}+ m{q_3}^2{C_4}^2{S_5}{C_5}{{\dot{q}}_2}\\{} & {} \quad + m{q_3}{{\dot{q}}_3}{S_4}- mL{q_3}{C_1}{S_4}{S_5}{{\dot{q}}_2}\\{} & {} \quad + m{q_3}^2{C_4}{S_5}^2{{\dot{q}}_4} + mL{{\dot{q}}_3}{C_1}{C_5},\\ {c_{31}}= & {} mL{S_{1 - 4}}{C_5}{{\dot{q}}_1}- mL{S_1}{S_5}{{\dot{q}}_2},\\ {c_{32}}= & {} - m{q_3}{S_4}^2{C_5}^2{{\dot{q}}_2}- m{q_3}{S_5}^2{{\dot{q}}_2}\\{} & {} - mL{C_1}{S_4}{C_5}{{\dot{q}}_2}- mL{S_1}{S_5}{{\dot{q}}_1}\\{} & {} \quad + m{q_3}{C_4}{S_5}{C_5}{{\dot{q}}_4}- m{q_3}{S_4}{{\dot{q}}_5},\\ {c_{33}}= & {} 0, \\ {c_{34}}= & {} - m{q_3}{C_5}^2{{\dot{q}}_4}+ m{q_3}{C_4}{S_5}{C_5}{{\dot{q}}_2},\\{} & {} - m{q_3}{{\dot{q}}_5} -m{q_3}{S_4}{{\dot{q}}_2},\\ {c_{41}}= & {} -mL{C_{1 - 4}}{{\dot{q}}_1}, \\ {c_{42}}= & {} - m{q_3}^2{S_4}{C_4}{C_5}^2{{\dot{q}}_2} - mL{q_3}{C_1}{C_4}{C_5}{{\dot{q}}_2} \\{} & {} \quad - m{q_3}^2{C_4}{C_5}^2{{\dot{q}}_5}\\{} & {} - m{q_3}{{\dot{q}}_3}{C_4}{S_5}{C_5},\\ {c_{43}}= & {} m{q_3}{C_5}^2{{\dot{q}}_4} - m{q_3}{C_4}{S_5}{C_5}{{\dot{q}}_2},\\ {c_{44}}= & {} m{q_{3}}{{\dot{q}}_3}{C_5}^2 - m{q_3}^2{S_5}{C_5}{{\dot{q}}_5},\\ {c_{45}}= & {} - m{q_3}^2{C_4}{C_5}^2{{\dot{q}}_2}- m{q_3}^2{S_5}{C_5}{{\dot{q}}_4}, \\ {c_{51}}= & {} - mL{q_3}{S_{1 - 4}}{S_5}{{\dot{q}}_1}- mL{q_3}{S_1}{C_5}{{\dot{q}}_2},\\ {c_{52}}= & {} - m{q_3}^2{C_4}^2{S_5}{C_5}{{\dot{q}}_2}+ mL{q_3}{C_1}{S_4}{S_5}{{\dot{q}}_2} \\{} & {} - mL{q_3}{S_1}{C_5}{{\dot{q}}_1}+ m{q_3}{{\dot{q}}_3}{S_4} + m{q_3}^2{C_4}{C_5}^2{{\dot{q}}_4},\\ {c_{53}}= & {} m{q_3}{S_4}{{\dot{q}}_2} + m{q_3}{{\dot{q}}_5}, \\ {c_{54}}= & {} m{q_3}^2{S_5}{C_5}{{\dot{q}}_4} + m{q_3}^2{C_4}{C_5}^2{{\dot{q}}_2},\\ {c_{55}}= & {} m{q_3}{{\dot{q}}_3},\\ {g_1}= & {} (m + \frac{1}{2}{M})gL{C_1}, {g_2} = 0, {g_3} = - mg{C_4}{C_5},\\ {g_4}= & {} mg{q_3}{S_4}{C_5}, {g_5} = mg{q_3}{C_4}{S_5},\\ d_1^{*}= & {} - (m + \frac{1}{2}{M}){\ddot{hL}}{C_1}, \\ d_2^{*}= & {} 0, d_3^{*} = m{\ddot{h}}{C_4}{C_5}, \\ d_4^{*}= & {} - m{\ddot{h}}{q_3}{S_4}{C_5}, \\ d_5^{*}= & {} - m{\ddot{h}}{q_3}{C_4}{S_5},\\ q_1= & {} \theta _1-\alpha , q_{2}=\theta _2-\beta , q_{3}=l(t), \\ q_{4}= & {} \theta _3-\alpha , q_{5}=\theta _4-\beta , \end{aligned}$$

where \(\tau _{1}\) and \(\tau _{2}\) are the torque of the boom, g is the acceleration of gravity, and \(d^{*}\) is the force of sea disturbances on the crane system, respectively. We abbreviate \(\sin {q}_1\) and \(\cos {q}_1\) as S1 and C1 for readability, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Ouyang, H. & Xi, H. Real-time trajectory planning for ship-mounted rotary cranes considering continuous sea wave disturbances. Nonlinear Dyn 111, 20959–20973 (2023). https://doi.org/10.1007/s11071-023-08953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08953-2

Keywords

Navigation