Skip to main content
Log in

\(H_{\infty }\) controller synthesis for interval type-2 fuzzy network systems with hybrid attacks and disturbances via dual-channel dynamic event-triggered mechanisms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study focuses on addressing the issue of dynamic event-triggered \(H_{\infty }\) control in the presence of disturbances and hybrid network attacks for interval type-2 fuzzy systems. A hybrid attack model is established using the Bernoulli distribution, incorporating random deception attacks and denial-of-service attacks. To save system resources, a dual-channel event-triggered mechanism is proposed, which differs from traditional single-channel event-triggered control. Different from the existing dynamic event-triggered mechanism with constant error coefficients, the sensor-side and controller-side event-triggered mechanisms combine system-dependent dynamic parameters, resulting in improved dynamic event-triggered mechanisms. These mechanisms realize resource saving and guarantee system performance. Zeno behavior is excluded. Additionally, this paper addresses the issue of membership function mismatch between the system and the controller due to hybrid attacks and event-triggered transmission, which is commonly encountered. Introducing slack matrices establishes a connection between mismatched membership functions, thereby mitigating design conservatism. By employing a Lyapunov-Krasovskii functional, sufficient conditions for guaranteeing the \(H_{\infty }\) performance of the system are derived. The efficacy of the proposed strategy is demonstrated through practical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data sets generated and/or analyzed during the current study are available from the corresponding author on a reasonable request.

References

  1. Cai, X., Shi, K., She, K., et al.: Quantized sampled-data control tactic for T-S fuzzy NCS under stochastic cyber-attacks and its application to truck-trailer system. IEEE Trans. Veh. Technol. 71(7), 7023–7032 (2022). https://doi.org/10.1109/TVT.2022.3169349

    Article  Google Scholar 

  2. Cao, L., Yao, D., Li, H., et al.: Fuzzy-based dynamic event triggering formation control for nonstrict-feedback nonlinear MASs. Fuzzy Sets Syst. 452, 1–22 (2023). https://doi.org/10.1016/j.fss.2022.03.005

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, J., Wang, Y., Park, J.H., et al.: Static output feedback quantized control for fuzzy Markovian switching singularly perturbed systems with deception attacks. IEEE Trans. Fuzzy Syst. 30(4), 1036–1047 (2022). https://doi.org/10.1109/TFUZZ.2021.3052104

    Article  Google Scholar 

  4. Deng, C., Wen, C., Huang, J., et al.: Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication. IEEE Trans. Autom. Control 67(5), 2669–2676 (2022). https://doi.org/10.1109/TAC.2021.3090739

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng, C., Jin, X.Z., Wu, Z.G., et al.: Data-driven-based cooperative resilient learning method for nonlinear MASs under DoS attacks. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2023.3252080

    Article  Google Scholar 

  6. Dong, J., Yang, G.H.: Observer-based output feedback control for discrete-time T-S fuzzy systems with partly immeasurable premise variables. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 98–110 (2017). https://doi.org/10.1109/TSMC.2016.2531655

    Article  Google Scholar 

  7. Fan, M., Tian, E., Xie, X.P., et al.: Stochastic data-based denial-of-service attack strategy design against remote state estimation in interval type-2 T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 31(3), 825–834 (2023). https://doi.org/10.1109/TFUZZ.2022.3189394

    Article  Google Scholar 

  8. Ge, C., Liu, Z., Wang, L., et al.: Improved stability criteria of T-S fuzzy systems with sampled-data-based dissipative control. Appl. Math. Comput. 424(127), 047 (2022). https://doi.org/10.1016/j.amc.2022.127047

    Article  MathSciNet  Google Scholar 

  9. Gu, Z., Yue, D., Park, J.H., et al.: Memory-event-triggered fault detection of networked IT2 T-S fuzzy systems. IEEE Trans. Cybern. 53(2), 743–752 (2023). https://doi.org/10.1109/TCYB.2022.3155755

    Article  Google Scholar 

  10. Han, S., Kommuri, S.K., Lee, S.: Affine transformed IT2 fuzzy event-triggered control under deception attacks. IEEE Trans. Fuzzy Syst. 29(2), 322–335 (2021). https://doi.org/10.1109/TFUZZ.2020.2999779

    Article  Google Scholar 

  11. Hou, Q., Dong, J.: Distributed dynamic event-triggered consensus control for multiagent systems with guaranteed \(L_2\) performance and positive inter-event times. IEEE Trans. Autom. Sci. Eng. (2022). https://doi.org/10.1109/TASE.2022.3231845

    Article  Google Scholar 

  12. Jin, Y., Han, S., Lee, EM., et al.: Development of autonomous driving systems using state estimator with multi-rate sampled-data. In: 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6, (2019). https://doi.org/10.1109/ICCE.2019.8661985

  13. Lam, H.: A review on stability analysis of continuous-time fuzzy-model-based control systems: from membership-function-independent to membership-function-dependent analysis. Eng. Appl. Artif. Intell. 67, 390–408 (2018). https://doi.org/10.1016/j.engappai.2017.09.007

    Article  Google Scholar 

  14. Lam, H.K., Li, H., Deters, C., et al.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2014). https://doi.org/10.1109/TIE.2013.2253064

    Article  Google Scholar 

  15. Li, H., Wu, C., Yin, S., et al.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 24(5), 1233–1245 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Ye, D.: Asynchronous event-triggered control for networked interval type-2 fuzzy systems against DoS attacks. IEEE Trans. Fuzzy Syst. 29(2), 262–274 (2021). https://doi.org/10.1109/TFUZZ.2020.2975495

    Article  Google Scholar 

  17. Li, X., Song, W., Li, Y., et al.: Finite-time dynamic event-triggered fuzzy output fault-tolerant control for interval type-2 fuzzy systems. IEEE Trans. Fuzzy Syst. 30(11), 4926–4938 (2022). https://doi.org/10.1109/TFUZZ.2022.3164518

    Article  Google Scholar 

  18. Li, X.M., Yao, D., Li, P., et al.: Secure finite-horizon consensus control of multiagent systems against cyber attacks. IEEE Trans. Cybern. 52(9), 9230–9239 (2022). https://doi.org/10.1109/TCYB.2021.3052467

    Article  Google Scholar 

  19. Li, Y., Li, Y.X., Tong, S.: Event-based finite-time control for nonlinear multiagent systems with asymptotic tracking. IEEE Trans. Autom. Control 68(6), 3790–3797 (2023). https://doi.org/10.1109/TAC.2022.3197562

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, G., Sun, Q., Wang, R., et al.: Reduced-order observer-based fuzzy adaptive dynamic event-triggered consensus control for multi-agent systems with communication faults. Nonlin. Dyn. 110(2), 1421–1435 (2022)

    Article  Google Scholar 

  21. Liu, J., Yin, T., Cao, J., et al.: Security control for T-S fuzzy systems with adaptive event-triggered mechanism and multiple cyber-attacks. IEEE Trans. Syst. Man Cybern. Syst. 51(10), 6544–6554 (2021). https://doi.org/10.1109/TSMC.2019.2963143

    Article  Google Scholar 

  22. Pan, Y., Wu, Y., Lam, H.K.: Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. 30(10), 4359–4368 (2022). https://doi.org/10.1109/TFUZZ.2022.3148875

    Article  Google Scholar 

  23. Qiu, J., Ji, W., Lam, H.K., et al.: Fuzzy-affine-model-based sampled-data filtering design for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 29(11), 3360–3373 (2021). https://doi.org/10.1109/TFUZZ.2020.3021699

    Article  Google Scholar 

  24. Rong, N., Wang, Z.: Event-based impulsive control of IT2 T-S fuzzy interconnected system under deception attacks. IEEE Trans. Fuzzy Syst. 29(6), 1615–1628 (2021). https://doi.org/10.1109/TFUZZ.2020.2983904

    Article  Google Scholar 

  25. Selvaraj, P., Kwon, O., Lee, S., et al.: Disturbance rejections of interval type-2 fuzzy systems under event-triggered control scheme. Appl. Math. Comput. 431(127), 323 (2022). https://doi.org/10.1016/j.amc.2022.127323

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi, P., Wang, H., Lim, C.C.: Network-based event-triggered control for singular systems with quantizations. IEEE Trans. Ind. Electron. 63(2), 1230–1238 (2016). https://doi.org/10.1109/TIE.2015.2475515

    Article  Google Scholar 

  27. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  28. Tan, Y., Yuan, Y., Xie, X., et al.: Dynamic event-triggered security control for networked T-S fuzzy system with non-uniform sampling. Fuzzy Sets Syst. 452, 91–109 (2023). https://doi.org/10.1016/j.fss.2022.08.018

    Article  MathSciNet  MATH  Google Scholar 

  29. Tan, Y., Yuan, Y., Xie, X., et al.: Observer-based event-triggered control for interval type-2 fuzzy networked system with network attacks. IEEE Trans. Fuzzy Syst. (2023). https://doi.org/10.1109/TFUZZ.2023.3237846

    Article  Google Scholar 

  30. Wang, J.W., Zhang, J.F., Wu, H.N.: Boundary fuzzy output tracking control of nonlinear parabolic infinite-dimensional dynamic systems: Application to cooling process in hot strip mills. IEEE Trans. Fuzzy Syst. 31(5), 1460–1473 (2023). https://doi.org/10.1109/TFUZZ.2022.3203524

    Article  Google Scholar 

  31. Wang, X., Xu, R., Huang, T., et al.: Event-triggered adaptive containment control for heterogeneous stochastic nonlinear multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2022.3230508

    Article  Google Scholar 

  32. Wang, Y., Yan, H., Zhang, H., et al.: Interval type-2 fuzzy control for HMM-based multiagent systems via dynamic event-triggered scheme. IEEE Trans. Fuzzy Syst. 30(8), 3063–3073 (2022). https://doi.org/10.1109/TFUZZ.2021.3101581

    Article  Google Scholar 

  33. Wu, T., Xiong, L., Cao, J., et al.: Hidden Markov model-based asynchronous quantized sampled-data control for fuzzy nonlinear Markov jump systems. Fuzzy Sets Syst. 432, 89–110 (2022). https://doi.org/10.1016/j.fss.2021.08.016

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, J., Wang, L., Su, S.F., et al.: Improved reachable set estimation and aperiodic sampled-data for T-S fuzzy Markovian jump systems. IEEE Trans. Syst. Man Cybern. Syst. 53(5), 3241–3254 (2023). https://doi.org/10.1109/TSMC.2022.3224017

    Article  Google Scholar 

  35. Xie, X., Hu, S., Liu, Y., et al.: Resilient adaptive event-triggered \(H_{\infty }\) fuzzy filtering for cyber-physical systems under stochastic-sampling and denial-of-service attacks. IEEE Trans. Fuzzy Syst. 31(1), 278–292 (2023). https://doi.org/10.1109/TFUZZ.2022.3185500

    Article  Google Scholar 

  36. Xu, Y., Sun, J., Wu, Z.G., et al.: Fully distributed adaptive event-triggered control of networked systems with actuator bias faults. IEEE Trans. Cybern. 52(10), 10773–10784 (2022). https://doi.org/10.1109/TCYB.2021.3059049

    Article  Google Scholar 

  37. Xu, Y., Wu, Z.G., Pan, Y.J.: Off-policy learning-based following control of cooperative autonomous vehicles under distributed attacks. IEEE Trans. Intell. Transp. Syst. 24(5), 5120–5130 (2023). https://doi.org/10.1109/TITS.2023.3240731

    Article  Google Scholar 

  38. Yang, B., Li, H., Yao, D., et al.: Do-based adaptive consensus control for multiple MUAVs with dynamic constraints. IEEE Trans. Syst. Man Cybern. Syst. 53(4), 2387–2398 (2023). https://doi.org/10.1109/TSMC.2022.3213249

    Article  Google Scholar 

  39. Yang, H., Peng, C., Cao, Z.: Attack-model-independent stabilization of networked control systems under a jump-like TOD scheduling protocol. Automatica 152(110), 982 (2023). https://doi.org/10.1016/j.automatica.2023.110982

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, Y., Niu, Y., Lam, J.: Security interval type-2 fuzzy sliding mode control under multi-strategy injection attack: design, analysis, and optimization. IEEE Trans. Fuzzy Syst. (2023). https://doi.org/10.1109/TFUZZ.2023.3239930

    Article  Google Scholar 

  41. Yao, D., Li, H., Shi, Y.: Adaptive event-triggered sliding-mode control for consensus tracking of nonlinear multiagent systems with unknown perturbations. IEEE Trans. Cybern. 53(4), 2672–2684 (2023). https://doi.org/10.1109/TCYB.2022.3172127

  42. Yao, Y., Tan, J., Wu, J., et al.: Event-triggered fixed-time adaptive fuzzy control for state-constrained stochastic nonlinear systems without feasibility conditions. Nonlin. Dyn. 105(1), 403–416 (2021)

    Article  Google Scholar 

  43. Zhang, C., Hu, J., Qiu, J., et al.: Event-triggered nonsynchronized \( {H}_{\infty }\) filtering for discrete-time T-S fuzzy systems based on piecewise Lyapunov functions. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2330–2341 (2017). https://doi.org/10.1109/TSMC.2017.2662063

    Article  Google Scholar 

  44. Zhang, H., Xi, R., Wang, Y., et al.: Event-triggered adaptive tracking control for random systems with coexisting parametric uncertainties and severe nonlinearities. IEEE Trans. Autom. Control 67(4), 2011–2018 (2022). https://doi.org/10.1109/TAC.2021.3079279

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, H., Guo, X., Sun, J., et al.: Event-triggered cooperative adaptive fuzzy control for stochastic nonlinear systems with measurement sensitivity and deception attacks. IEEE Trans. Fuzzy Syst. 31(3), 774–785 (2023). https://doi.org/10.1109/TFUZZ.2022.3189412

    Article  Google Scholar 

  46. Zhang, Z., Dong, J.: A novel \( {H}_{\infty }\) control for T-S fuzzy systems with membership functions online optimization learning. IEEE Trans. Fuzzy Syst. 30(4), 1129–1138 (2022). https://doi.org/10.1109/TFUZZ.2021.3053315

    Article  Google Scholar 

  47. Zhang, Z., Su, S.F., Niu, Y.: Dynamic event-triggered control for interval type-2 fuzzy systems under fading channel. IEEE Trans. Cybern. 51(11), 5342–5351 (2021). https://doi.org/10.1109/TCYB.2020.2996296

    Article  Google Scholar 

  48. Zheng, X., Zhang, H., Wang, Z., et al.: Finite-time dynamic event-triggered distributed \({H}_{\infty }\) filtering for T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 30(7), 2476–2486 (2022). https://doi.org/10.1109/TFUZZ.2021.3086560

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant 62273079 and Grant 61420106016; in part by the Fundamental Research Funds for the Central Universities, China, under Grant N2004002, Grant N2104005, and Grant N182608004; in part by the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries, China, under Grant 2013ZCX01; and in part by the 1912 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuxiang Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Dong, J. \(H_{\infty }\) controller synthesis for interval type-2 fuzzy network systems with hybrid attacks and disturbances via dual-channel dynamic event-triggered mechanisms. Nonlinear Dyn 111, 21079–21097 (2023). https://doi.org/10.1007/s11071-023-08950-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08950-5

Keywords

Navigation