Skip to main content
Log in

The interaction of three long shallow-water waves with different dispersion relations modeled by generalized Hirota–Satsuma KdV systems with some variable coefficients

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, the generalized Hirota–Satsuma KdV systems with with some variable coefficients is used to simulate the interaction of three long waves in shallow water with different dispersion relations. Exact solutions of the equations under consideration are generated using a Lie symmetry transform and rapidly convergent approximation method. In terms of exponential functions, three new sets of exact solutions have been discovered. The solutions of the partial differential equations in question are then deduced by inverting them into the Lie symmetry transformation. A theorem has been put forth and proven to ensure that the first set of solutions obtained are bounded. The solutions are plotted using the results obtained from the theorems. The graphs show solutions that have different characteristics of multi-hump solutions. For different values of the arbitrary velocity function, the solution is shown to have M-shaped, S-shaped, L-shaped, snake-shaped, boomerang-shaped and boomerang-shaped with cyclic effects multi-hump soliton solutions. We find that by varying the variable coefficient, we can tune the structure of the above solitons. These results demonstrate not only the efficiency of the updated method, but also that the solution has been enhanced with new multi-hump features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable—no new data generated

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  2. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994)

  3. Adomian, G., Rach, R.: Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 91(1), 39–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adomian, G., Rach, R.: Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. J. Math. Anal. Appl. 174(1), 118–137 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adomian, G., Rach, R.: A new algorithm for matching boundary conditions in decomposition solutions. Appl. Math. Comput. 57(1), 61–68 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Adomian, G., Rach, R.: Modified decomposition solution of linear and nonlinear boundary-value problems. Nonlinear Anal. Theory Methods Appl. 23(5), 615–619 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alquran, M., Al-Khaled, K., Ali, M., Arqub, O.A.: Bifurcations of the time-fractional generalized coupled Hirota–Satsuma KdV system. Waves Wavelets Fractals 3(1), 31–39 (2017)

    Article  MATH  Google Scholar 

  8. Apostol, T.M.: Mathematical Analysis. 2nd Edition, Addison-Wesley, Boston (1974)

  9. Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica®. Springer, New York (2000)

    Book  MATH  Google Scholar 

  10. Bhandari, N.: Generating functions involving binomial coefficients (4n 2n), it’s squared, reciprocal and their closed forms for hypergeometric expressions, romanian mathematical magazine. an interactive journal. Romanian Mathematical Magazine, An interactive journal (2021)

  11. Buffoni, B., Séré, E.: A global condition for quasi-random behavior in a class of conservative systems. Commun. Pure Appl. Math. 49(3), 285–305 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, Y.H., Wang, D.S.: Prolongation structures of a generalized coupled Korteweg–de Vries equation and Miura transformation. Commun. Nonlinear Sci. Numer. Simul. 15(9), 2344–2349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cattani, F., Kim, A., Hansson, T., Anderson, D., Lisak, M.: Multihump soliton-like structures in interactions of lasers and Bose–Einstein condensates. EPL (Europhys. Lett.) 94(5), 53003 (2011)

    Article  Google Scholar 

  14. Das, P.K.: Rapidly convergent approximation method to chiral nonlinear Schrodinger’s equation in (1+2)-dimensions. Sohag J. Math. 5, 29–33 (2018)

    Article  Google Scholar 

  15. Das, P.K.: The rapidly convergent approximation method to solve system of equations and its application to the Biswas–Arshed equation. Optik 195, 163134 (2019)

    Article  Google Scholar 

  16. Das, P.K.: Chirped and chirp-free optical exact solutions of the Biswas–Arshed equation with full nonlinearity by the rapidly convergent approximation method. Optik 223, 165293 (2020)

    Article  Google Scholar 

  17. Das, P.K.: New multi-hump exact solitons of a coupled Korteweg–de-Vries system with conformable derivative describing shallow water waves via RCAM. Phys. Scr. 95(10), 105212 (2020)

    Article  Google Scholar 

  18. Das, P.K., Mandal, S., Panja, M.M.: Piecewise smooth localized solutions of Liénard-type equations with application to NLSE. Math. Methods Appl. Sci. 41(17), 7869–7887 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Das, P.K., Panja, M.M.: An Improved Adomian Decomposition Method for Nonlinear ODEs. In: Sarkar, S., Basu, U., De, S. (eds) Applied Mathematics. Springer Proceedings in Mathematics & Statistics, vol 146. Springer, New Delhi. (2015). https://doi.org/10.1007/978-81-322-2547-8_18

  20. Das, P.K., Panja, M.: A rapidly convergent approximation method for nonlinear ordinary differential equations. IJSEAS 2(8), 334–348 (2016)

    Google Scholar 

  21. Das, P.K., Singh, D., Panja, M.: Solutions and conserved quantities of Biswas–Milovic equation by using the rapidly convergent approximation method. Optik 174, 433–446 (2018)

    Article  Google Scholar 

  22. Das, P.K., Singh, D., Panja, M.M.: Some modifications on RCAM for getting accurate closed-form approximate solutions of Duffing-and Lienard-type equations. J. Adv. Math. 16, 8213–8225 (2019)

    Article  Google Scholar 

  23. Duan, J.S., Rach, R.: A new modification of the adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Appl. Math. Comput. 218(8), 4090–4118 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Durur, H.: Different types analytic solutions of the (1+ 1)-dimensional resonant nonlinear schrödinger’s equation using (g’/g)-expansion method. Mod. Phys. Lett. B 34(03), 2050036 (2020)

    Article  MathSciNet  Google Scholar 

  25. Geng, X., Ren, H., He, G.: Darboux transformation for a generalized Hirota–Satsuma coupled Korteweg–de Vries equation. Phys. Rev. E 79(5), 056602 (2009)

    Article  MathSciNet  Google Scholar 

  26. Goemans, M.: 18.310 lecture notes: Generating functions, MIT Mathematics (2015) https://math.mit.edu/~goemans/18310S15/generating-function-notes.pdf. http://math.mit.edu/~goemans/18310S15/18310.html

  27. Gorshkov, K., Ostrovsky, L., Papko, V., Pikovsky, A.: On the existence of stationary multisolitons. Phys. Lett. A 74(3–4), 177–179 (1979)

    Article  MathSciNet  Google Scholar 

  28. Groves, M.: Solitary-wave solutions to a class of fifth-order model equations. Nonlinearity 11(2), 341 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de Vries equation. Phys. Lett. A 85(8–9), 407–408 (1981)

    Article  MathSciNet  Google Scholar 

  30. Hosseini, K., Manafian, J., Samadani, F., Foroutan, M., Mirzazadeh, M., Zhou, Q.: Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (\(\phi \) (\(\eta \))/2)-expansion method and exp function approach. Optik 158, 933–939 (2018)

    Article  Google Scholar 

  31. Hu, H.C., Liu, Q.: New darboux transformation for Hirota–Satsuma coupled KdV system. Chaos Solitons Fractals 17(5), 921–928 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Khalique, C.M.: Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled kdv system of fluid mechanics. Open Phys. 19(1), 18–25 (2021)

    Article  Google Scholar 

  33. Kumar, V.S., Rezazadeh, H., Eslami, M., Izadi, F., Osman, M.: Jacobi elliptic function expansion method for solving kdv equation with conformable derivative and dual-power law nonlinearity. Int. J. Appl. Comput. Math. 5(5), 127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Z., Zhao, Z.: Blow-up criteria and periodic peakons for a two-component extension of \(\mu \)-version modified Camassa–Holm equation. Commun. Theor. Phys. 72, 035004 (2020). https://doi.org/10.1088/1572-9494/ab690b

    Article  MathSciNet  MATH  Google Scholar 

  35. Ostrovskaya, E.A., Kivshar, Y.S., Skryabin, D.V., Firth, W.J.: Stability of multihump optical solitons. Phys. Rev. Lett. 83(2), 296 (1999)

    Article  MATH  Google Scholar 

  36. Ostrovskaya, E.A., Mingaleev, S.F., Kivshar, Y.S., Gaididei, Y.B., Christiansen, P.L.: Multi-soliton energy transport in anharmonic lattices. Phys. Lett. A 282(3), 157–162 (2001)

    Article  MATH  Google Scholar 

  37. Parra Prado, H., Cisneros-Ake, L.A.: Multi-hump bright and dark solitons for the Schrödinger–Korteweg–de Vries coupled system. Chaos Interdiscip. J. Nonlinear Sci. 29(5), 053133 (2019)

    Article  MATH  Google Scholar 

  38. Qi, F., Ward, M.D.: Closed-form formulas and properties of coefficients in Maclaurin’s series expansion of Wilf’s function composited by inverse tangent, square root, and exponential functions. arXiv e-prints pp. arXiv:2110.08576 (2021)

  39. Rosen, K.H.: Discrete Mathematics & Applications. McGraw-Hill, New York (1999)

    Google Scholar 

  40. Rydén, C.: Generating functions: powerful tools for recurrence relations. Hermite polynomials generating function (2023)

  41. Singh, K., Gupta, R.: Lie symmetries and exact solutions of a new generalized Hirota–Satsuma coupled KdV system with variable coefficients. Int. J. Eng. Sci. 44(3–4), 241–255 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian, B., Gao, Y.T.: Truncated painlevé expansion and a wide-ranging type of generalized variable-coefficient Kadomtsev–Petviashvili equations. Phys. Lett. A 209(5–6), 297–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vithya, A., Rajan, M.M., Prakash, S.A.: Combined effects of frequency and higher-order effects on soliton conversion in an erbium fiber with inhomogeneous broadening. Nonlinear Dyn. 91(1), 687–696 (2018)

    Article  Google Scholar 

  44. Wang, L., Li, S., Qi, F.H.: Breather-to-soliton and rogue wave-to-soliton transitions in a resonant erbium-doped fiber system with higher-order effects. Nonlinear Dyn. 85(1), 389–398 (2016)

    Article  MathSciNet  Google Scholar 

  45. Wilf, H.S.: Generatingfunctionology. CRC Press, Boca Raton (2005)

    Book  MATH  Google Scholar 

  46. Wu, Y., Geng, X., Hu, X., Zhu, S.: A generalized Hirota–Satsuma coupled Korteweg–de Vries equation and Miura transformations. Phys. Lett. A 255(4–6), 259–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xue, L., Liu, Q., Wang, D.: A generalized Hirota–Satsuma coupled kdv system: darboux transformations and reductions. J. Math. Phys. 57(8), 083506 (2016)

  48. Yomba, E., Zakeri, G.A.: Dynamics of wide and snake-like pulses in coupled schrödinger equations with full-modulated nonlinearities. Phys. Lett. A 380(4), 530–539 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zayed, E.E., Abourabia, A., Gepreel, K.A., Horbaty, M.E.: On the rational solitary wave solutions for the nonlinear Hirota–Satsuma coupled kdv system. Appl. Anal. 85(6–7), 751–768 (2006)

  50. Zhao, L., Li, P., Han, T.: Bifurcation, traveling wave solutions, and stability analysis of the fractional generalized Hirota–Satsuma coupled kdv equations. Discrete Dyn. Nat. Soc. 2021, 1–6 (2021)

  51. Zhao, Z., Han, B.: Lie symmetry analysis, bäcklund transformations, and exact solutions of a (2+1)-dimensional Boiti–Leon–Pempinelli system. J. Math. Phys. 58(10), 101514 (2017)

  52. Zhao, Z., He, L.: Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional kdv–mkdv equation. Theor. Math. Phys. 206(2), 142–162 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zigao, C., Junfen, L., Fang, L.: New exact solutions for the variable-coefficient generalized Hirota–Satsuma coupled kdv system. In: 2010 international conference on electrical and control engineering, pp. 1349–1354. IEEE (2010)

Download references

Acknowledgements

The author appreciates the referees’ comments, which helped to improve the manuscript. The author acknowledges Professor Madan Mohan Panja of the mathematics department of Visva-Bharati for his helpful advice in revising the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Kumar Das.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.K. The interaction of three long shallow-water waves with different dispersion relations modeled by generalized Hirota–Satsuma KdV systems with some variable coefficients. Nonlinear Dyn 111, 21259–21278 (2023). https://doi.org/10.1007/s11071-023-08929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08929-2

Keywords

Navigation