Skip to main content
Log in

Nonlinear dynamics characteristics of a magnetically actuated dual-spin capsule robot

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To study the attitude dynamics of a magnetically driven dual-spin spherical capsule robot (DSCR), a fourth-order periodic time-varying nonlinear dynamic equation for the DSCR under the action of complex external torque was established based on Euler dynamics. The nonlinear dynamic characteristic of the DSCR was studied by using the incremental harmonic balance (IHB) method and the Runge–Kutta (RK) method. A semi-analytical periodic solution of the attitude dynamics equation was obtained, and the stability of periodic solutions was analyzed based on Floquet theory. By using the bifurcation diagram, time domain diagram, phase diagram, Poincare map and Lyapunov exponent diagram as analysis methods, the global nonlinear dynamic response of the DSCR was studied. The change rule of the global topological structure of the system and the path of the system to chaos were obtained when the magnetic flux density and the magnetic field frequency changed in a large range. The spatial universal uniform rotating magnetic field (SURMF) experimental platform and the axis orientation measurement device were built to verify the dynamic characteristics of the DSCR. The experimental analysis results were in good agreement with the theoretical calculation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Paper, R., Lucarini, G., Ciuti, G., Mura, M., Rizzo, R., Menciassi, A.: A new concept for magnetic capsule colonoscopy based on an electromagnetic system regular paper. Int. J. Adv. Robot. Syst. (2015). https://doi.org/10.5772/60134

    Article  Google Scholar 

  2. Marlicz, W., Ren, X., Robertson, A., Dario, P., Wang, S., Plevris, J.N., Koulaouzidis, A., Ciuti, G.: Frontiers of robotic gastroscopy: a comprehensive review of robotic gastroscopes and technologies. Cancers (Basel) 12, 2775 (2020)

    Article  Google Scholar 

  3. Shamsudhin, N., Zverev, V.I., Keller, H., Pane, S., Egolf, P.W., Nelson, B.J., Tishin, A.M.: Magnetically guided capsule endoscopy. Med. Phys. 44, e91–e111 (2017). https://doi.org/10.1002/mp.12299

    Article  Google Scholar 

  4. Dachlika, T., Zarrouk, D.: Mechanics of locomotion of a double screw crawling robot. Mech. Mach. Theory 153, 104010 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104010

    Article  Google Scholar 

  5. Han, D., Yan, G., Wang, Z., Jiang, P., Liu, D., Zhao, K., Ma, J.: The modelling, analysis, and experimental validation of a novel micro-robot for diagnosis of intestinal diseases. Micromachines 11, 896 (2020). https://doi.org/10.3390/mi11100896

    Article  Google Scholar 

  6. Ciuti, G., Valdastri, P., Menciassi, A., Dario, P.: Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28, 199–207 (2010). https://doi.org/10.1017/S0263574709990361

    Article  Google Scholar 

  7. Carpi, F., Kastelein, N., Talcott, M., Pappone, C.: Magnetically controllable gastrointestinal steering of video capsules. IEEE Trans. Biomed. Eng. 58, 231–234 (2011). https://doi.org/10.1109/TBME.2010.2087332

    Article  Google Scholar 

  8. Hosseini, S., Khamesee, M.B.: Design and control of a magnetically driven capsule-robot for endoscopy and drug delivery. In: TIC-STH’09 2009 IEEE Toronto Int. Conference–Science Technology Humanity, pp. 697–702 (2009). https://doi.org/10.1109/TIC-STH.2009.5444409

  9. Yim, S., Member, S., Sitti, M., Member, S.: Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183–194 (2012)

    Article  Google Scholar 

  10. Yim, S., Sitti, M.: Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 183–194 (2012)

    Article  Google Scholar 

  11. Rahman, I., Afzal, N.A., Patel, P.: The role of magnetic assisted capsule endoscopy (MACE) to aid visualisation in the upper GI tract. Comput. Biol. Med. 65, 1–5 (2015). https://doi.org/10.1016/j.compbiomed.2015.03.014

    Article  Google Scholar 

  12. Zhang, Y., Su, Z., Chi, M., Huang, Y., Wang, D.: Magnitude and orientation error correction of a superimposed spatial universal rotating magnetic vector. IEEE Trans. Magn. 52, 1–9 (2016). https://doi.org/10.1109/TMAG.2016.2517598

    Article  Google Scholar 

  13. Zhang, Y.S., Su, Z.K., Yang, Z.Q.: A control strategy for posture adjustment and steering-driven of the dual hemisphere capsule robot. China Pat. 21, 104983385 (2015)

    Google Scholar 

  14. Liao, Z., Zou, W., Li, Z.: Clinical application of magnetically controlled capsule gastroscopy in gastric disease diagnosis: recent advances. Sci. China Life Sci. 61, 1304 (2018). https://doi.org/10.1007/s11427-018-9353-5

    Article  Google Scholar 

  15. Guo, J., Bao, Z., Fu, Q., Guo, S.: Design and implementation of a novel wireless modular capsule robotic system in pipe. Med. Biol. Eng. Comput. 58, 2305–2324 (2020). https://doi.org/10.1007/s11517-020-02205-w

    Article  Google Scholar 

  16. Wang, X.F., Zhu, W.D.: A modified incremental harmonic balance method based on the fast Fourier transform and Broyden’s method. Nonlinear Dyn. 81, 981–989 (2015). https://doi.org/10.1007/s11071-015-2045-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Engineering, S., Kong, H., Kong, H., Engineering, S., Polytechnic, H.K., Kong, H.: Application balance method of the incremental harmonic systems. J. Sound Vib. 140, 273–286 (1990)

    Article  Google Scholar 

  18. Lau, S.L., Cheung, Y.K., Wu, S.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. J. Appl. Mech. 50, 871–876 (1983). https://doi.org/10.1115/1.3167160

    Article  MathSciNet  MATH  Google Scholar 

  19. David, A., Sinha, S.C.: Versal deformation and local bifurcation analysis of time-periodic nonlinear systems. Nonlinear Dyn. (2000). https://doi.org/10.1023/A:1008330023291

    Article  MathSciNet  Google Scholar 

  20. Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226, 469–492 (1999). https://doi.org/10.1006/jsvi.1999.2264

    Article  Google Scholar 

  21. Xu, G.Y., Zhu, W.D.: Nonlinear and time-varying dynamics of high-dimensional models of a translating beam with a stationary load subsystem. J. Vib. Acoust. 132, 61012 (2010). https://doi.org/10.1115/1.4000464

    Article  Google Scholar 

  22. Yongshun, Z.: Analysis and correction of the orientation error in spatial universal rotating magnetic vector. IEEE Trans. Magn. 52(5), 12–14 (2016). https://doi.org/10.1109/TMAG.2016.2517598

    Article  Google Scholar 

  23. Huiyuan, Y., Yongshun, Z., Zhenhu, L., Xu, L., Guanxi, L.: Posture dynamic modeling and stability analysis of dual-spin spherical capsule robot driven by pure magnetic moment. Micromachines 12(3), 238 (2021)

    Article  Google Scholar 

  24. Brown, B.M., Eastham, M.S.P., Schmidt, K.M.: Floquet Theory. Springer, Cham (2013)

    Book  Google Scholar 

  25. Friedmann, P.P., Hammond, C.E., Woo, T.H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11, 1117–1136 (1977). https://doi.org/10.1002/nme.1620110708

    Article  MathSciNet  MATH  Google Scholar 

  26. Friedmann, P.P.: Numerical methods for the treatment of periodic systems with applications tostructural dynamics and helicopter rotor dynamics. Comput. Struct 35, 329–347 (1990)

    Article  MATH  Google Scholar 

  27. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ge, Z.M., Chen, H.H.: Bifurcations and chaotic motions in a rate gyro with a sinusoidal velocity about the spin axis. J. Sound Vib. 200, 121–137 (1997). https://doi.org/10.1006/jsvi.1996.0695

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision (1999)

Download references

Funding

This work was supported by Natural Science Foundation of Henan Province under Grant 232300420087, Education Department of Henan Province, under Grant 19A460021 and Technology Department of Henan Province, under Grant 212102210352.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Huiyuan Yang, Zhigang Zhou, Yugong Dang, Xiaoyi Wang, Genggeng Li and Zhidong Xu. The first draft of the manuscript was written by Huiyuan Yang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yugong Dang or Xiaoyi Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ \overline{\varvec{M}}\left( \varvec{X} \right) = \left[ {\begin{array}{*{20}c} {J_{e} \cos x_{2} } & 0 \\ 0 & {J_{e} } \\ \end{array} } \right],\;\overline{\varvec{N}}\left( \varvec{X} \right) = \left[ {\begin{array}{*{20}c} {k\cos x_{2} - J_{e} \sin x_{2} } & { - J_{1} \omega } \\ {J_{1} \omega \cos x_{2} } & k \\ \end{array} } \right] $$
$$ {\overline{\varvec{K}}}\left( {{\varvec{X}},{\varvec{X^{\prime}}}} \right) = \left[ {\begin{array}{*{20}c} {(J_{1} + J_{2} - J_{e} )x_{1}^{\prime } x_{2}^{\prime } \sin x_{2} } \\ { - (J_{1} + J_{2} - J_{e} )x_{1}^{\prime 2} \sin x_{2} \cos x_{2} } \\ \end{array} } \right],\;{\overline{\varvec{H}}}\left( {\varvec{X}} \right) = \left[ {\begin{array}{*{20}c} {Gl\sin x_{1} } \\ {Gl\cos x_{1} \sin x_{2} } \\ \end{array} } \right] $$
$$ {\overline{\mathbf{F}}}\left( {{\varvec{X}},\tau } \right) = \left[ {\begin{array}{*{20}c} { - (D\cos \tau + E\sin \tau )\cos (\tau - \delta )} \\ {(D\cos \tau + E\sin \tau )\sin (\tau - \delta )} \\ \end{array} } \right] $$
$$ \begin{gathered} D{\text{ = cos}}\alpha_{1} \sin x_{1} \cos x_{2} - \sin \alpha_{1} \cos x_{1} \cos x_{2} \hfill \\ E = \sin \alpha_{1} \sin \beta_{1} \sin x_{1} \cos x_{2} - \cos \beta_{1} \sin x_{2} + \cos \alpha_{1} \sin \beta_{1} \cos x_{1} \cos x_{2} \hfill \\ \end{gathered} $$

Appendix 2

$$ {\overline{\varvec{K}}}_{0} = \left[ {\begin{array}{*{20}c} 0 & {(J_{1} + J_{2} - J_{e} )\alpha^{\prime}\beta^{\prime}\cos \beta } \\ 0 & { - (J_{1} + J_{2} - J_{e} )\alpha^{{\prime}{2}} \cos 2\beta } \\ \end{array} } \right],\;{\overline{\varvec{F}}}_{0} = \left[ {\begin{array}{*{20}c} { - (\frac{dD}{{d{\varvec{X}}}}\cos \tau + \frac{dE}{{d{\varvec{X}}}}\sin \tau )\cos (\tau - \delta )} \\ {(\frac{dD}{{d{\varvec{X}}}}\cos \tau + \frac{dE}{{d{\varvec{X}}}}\sin \tau )\sin (\tau - \delta )} \\ \end{array} } \right] $$
$$ \begin{gathered} \frac{dD}{{d{\varvec{X}}}} = \left[ {\begin{array}{*{20}l} {a_{11} \cos x_{1} \cos x_{2} - a_{31} \sin x_{1} \cos x_{2} } \hfill & { - a_{11} \sin x_{1} \sin x_{2} - a_{31} \cos x_{1} \sin x_{2} } \hfill \\ \end{array} } \right] \hfill \\ \frac{dE}{{d{\varvec{X}}}} = \left[ {\begin{array}{*{20}l} {a_{12} \cos x_{1} \cos x_{2} - a_{32} \sin x_{1} \cos x_{2} } \hfill & { - a_{12} \sin x_{1} \sin x_{2} - a_{22} \cos x_{2} - a_{32} \cos x_{1} \sin x_{2} } \hfill \\ \end{array} } \right] \hfill \\ \end{gathered} $$
$$ {\overline{\varvec{H}}}_{0} = \left[ {\begin{array}{*{20}c} {Gl\cos x_{1} } & 0 \\ { - Gl\sin x_{1} \sin x_{2} } & {Gl\cos x_{1} \cos x_{2} } \\ \end{array} } \right] $$

Appendix 3

$$ {\varvec{M}} = \int_{0}^{2\pi } {{\varvec{S}}^{T} {\varvec{\overline{M}S^{\prime\prime}}}d\tau } ,\;{\varvec{N}} = \int_{0}^{2\pi } {{\varvec{S}}^{T} {\varvec{\overline{N}S^{\prime}}}d\tau } $$
$$ {\varvec{K}} = \int_{0}^{2\pi } {{\varvec{S}}^{T} {\overline{\varvec{K}}}d\tau } ,\;{\varvec{F}}{ = }\int_{0}^{2\pi } {{\varvec{S}}^{T} {\overline{\varvec{F}}}d\tau } $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhou, Z., Dang, Y. et al. Nonlinear dynamics characteristics of a magnetically actuated dual-spin capsule robot. Nonlinear Dyn 111, 20771–20792 (2023). https://doi.org/10.1007/s11071-023-08920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08920-x

Keywords

Navigation