Skip to main content
Log in

Fractional robust data-driven control of nonlinear MEMS gyroscope

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research proposes a new fractional robust data-driven control method to control a nonlinear dynamic micro-electromechanical (MEMS) gyroscope model. The Koopman theory is used to linearize the nonlinear dynamic model of MEMS gyroscope, and the Koopman operator is obtained by using the dynamic mode decomposition (DMD) method. However, external disturbances constantly affect the MEMS gyroscope. To compensate for these perturbations, a fractional sliding mode controller (FOSMC) is applied. The FOSMC has several advantages, including high trajectory tracking performance and robustness. However, one of the drawbacks of FOSMC is generating high control inputs. To overcome this limitation, the researchers proposed a compound controller design that applies fractional proportional integral derivative (FOPID) to reduce the control efforts. The simulation results showed that the proposed compound Koopman-FOSMC and FOPID (Koopman-CFOPIDSMC) outperformed two other controllers, including FOSMC and Koopman-FOSMC, in terms of performance. Therefore, this research proposes an effective approach to control the nonlinear dynamic model of MEMS gyroscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Rahmani, M., Komijani, H., Ghanbari, A., Ettefagh, M.M.: Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst. Technol. 24(6), 2835–2846 (2018)

    Article  Google Scholar 

  2. Fang, Y., Fu, W., Ding, H., Fei, J.: Modeling and neural sliding mode control of mems triaxial gyroscope. Adv. Mech. Eng. 14(3), 16878132221085876 (2022)

    Article  Google Scholar 

  3. Zhang, R., Shao, T., Zhao, W., Li, A., Xu, B.: Sliding mode control of MEMS gyroscopes using composite learning. Neurocomputing 275, 2555–2564 (2018)

    Article  Google Scholar 

  4. Rahmani, M., Rahman, M.H.: A novel compound fast fractional integral sliding mode control and adaptive PI control of a MEMS gyroscope. Microsyst. Technol. 25(10), 3683–3689 (2019)

    Article  Google Scholar 

  5. Su, Y., Xu, P., Han, G., Si, C., Ning, J., Yang, F.: The characteristics and locking process of nonlinear MEMS gyroscopes. Micromachines 11(2), 233 (2020)

    Article  Google Scholar 

  6. Chen, J., Dang, Y., Han, J.: Offset-free model predictive control of a soft manipulator using the Koopman operator. Mechatronics 86, 102871 (2022)

    Article  Google Scholar 

  7. Schulze, J.C., Doncevic, D.T., Mitsos, A.: Identification of MIMO Wiener-type Koopman models for data-driven model reduction using deep learning. Comput. Chem. Eng. 161, 107781 (2022)

    Article  Google Scholar 

  8. Zhang, X., Pan, W., Scattolini, R., Yu, S., Xu, X.: Robust tube-based model predictive control with Koopman operators. Automatica 137, 110114 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nat. Commun. 9(1), 1–10 (2018)

    Article  Google Scholar 

  10. Qian, S., Chou, C.A.: A Koopman-operator-theoretical approach for anomaly recognition and detection of multi-variate EEG system. Biomed. Signal Process. Control 69, 102911 (2021)

    Article  Google Scholar 

  11. Kou, J., Le Clainche, S., Ferrer, E.: Data-driven eigensolution analysis based on a spatio-temporal Koopman decomposition, with applications to high-order methods. J. Comput. Phys. 449, 110798 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sinha, S., Nandanoori, S.P., Yeung, E.: Koopman operator methods for global phase space exploration of equivariant dynamical systems. IFAC-PapersOnLine 53(2), 1150–1155 (2020)

    Article  Google Scholar 

  13. Nathan Kutz, J., Proctor, J.L., Brunton, S.L.: Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems. Complexity 2018, 1–16 (2018)

    Article  MATH  Google Scholar 

  14. Mamakoukas, G., Castano, M., Tan, X., Murphey, T.: Local Koopman operators for data-driven control of robotic systems. In: Robot. Sci. Syst. (2019)

  15. Gibson, A., Yee, X., Calvisi, M.: Application of Koopman LQR to the control of nonlinear bubble dynamics. In: APS Division of Fluid Dynamics Meeting Abstracts (pp. P21–003) (2021)

  16. Arbabi, H., Korda, M., Mezić, I.: A data-driven koopman model predictive control framework for nonlinear partial differential equations. In: 2018 IEEE Conference on Decision and Control (CDC) (pp. 6409–6414). IEEE (2018)

  17. Calderón, H. M., Schulz, E., Oehlschlägel, T., Werner, H.: Koopman Operator-based Model Predictive Control with Recursive Online Update. In: 2021 European Control Conference (ECC) (pp. 1543–1549). IEEE (2021)

  18. Huimin, W., Liang, H., Yunxiang, G., Hailong, C., Cheng, L.: Adaptive neural Sliding Mode Control for MEMS gyroscope using fractional calculus. In: 2019 34th Youth Academic Annual Conference of Chinese Association of Automation (YAC) (pp. 602–606). IEEE (2019).

  19. Rahmani, M., Rahman, M.H., Ghommam, J.: Compound fractional integral terminal sliding mode control and fractional PD control of a MEMS gyroscope. In: New Trends in Robot Control (pp. 359–370). Springer, Singapore (2020)

  20. Rahmani, M., Rahman, M.H.: A new adaptive fractional sliding mode control of a MEMS gyroscope. Microsyst. Technol. 25(9), 3409–3416 (2019)

    Article  Google Scholar 

  21. Fazeli Asl, S.B., Moosapour, S.S.: Fractional order fuzzy dynamic backstepping sliding mode controller design for triaxial MEMS gyroscope based on high-gain and disturbance observers. IETE J. Res. 67(6), 799–816 (2021)

    Article  Google Scholar 

  22. Wang, Z., Fei, J.: Fractional-order terminal sliding mode control using self-evolving recurrent Chebyshev fuzzy neural network for MEMS gyroscope. IEEE Tran. Fuzzy Syst. (2021)

  23. Lu, C., Fei, J.: Adaptive sliding mode control of MEMS gyroscope with prescribed performance. In 2016 14th International Workshop on Variable Structure Systems (VSS) (pp. 65–70). IEEE (2016)

  24. Guo, Y., Xu, B., Zhang, R.: Terminal sliding mode control of mems gyroscopes with finite-time learning. IEEE Trans. Neural Netw. Learn. Syst. 32(10), 4490–4498 (2020)

    Article  MathSciNet  Google Scholar 

  25. Gao, P., Zhang, G., Ouyang, H., Mei, L.: An adaptive super twisting nonlinear fractional order PID sliding mode control of permanent magnet synchronous motor speed regulation system based on extended state observer. IEEE Access 8, 53498–53510 (2020)

    Article  Google Scholar 

  26. Fei, J., Feng, Z.: Fractional-order finite-time super-twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural network. IEEE Trans. Syst. Man Cybern. Syst. 51(12), 7692–7706 (2020)

    Article  MathSciNet  Google Scholar 

  27. Mujumdar, A., Tamhane, B., Kurode, S.: Observer-based sliding mode control for a class of noncommensurate fractional-order systems. IEEE/ASME Trans. Mechatron. 20(5), 2504–2512 (2015)

    Article  Google Scholar 

  28. Abdelouahab, M.S., Hamri, N.E.: The Grünwald-Letnikov fractional-order derivative with fixed memory length. Mediterr. J. Math. 13(2), 557–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ping, Z., Yin, Z., Li, X., Liu, Y., Yang, T.: Deep Koopman model predictive control for enhancing transient stability in power grids. Int. J. Robust Nonlinear Control 31(6), 1964–1978 (2021)

    Article  Google Scholar 

  30. Snyder, G., Song, Z.: Koopman operator theory for nonlinear dynamic modeling using dynamic mode decomposition (2021). arXiv preprint arXiv:2110.08442

Download references

Funding

This material is based upon work supported by the National Science Foundation under 261 Grant no. 1828010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, M., Redkar, S. Fractional robust data-driven control of nonlinear MEMS gyroscope. Nonlinear Dyn 111, 19901–19910 (2023). https://doi.org/10.1007/s11071-023-08912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08912-x

Keywords

Navigation