Skip to main content
Log in

The effects of travel restrictions and detection measures on epidemic spreading in a metapopulation network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The implementation of intervention strategies plays a crucial role in preventing the spread of epidemics. In this study, we incorporated travel restrictions and detection measures into a metapopulation framework, creating an epidemic model that takes into account recurrent mobility patterns. We determined theoretical thresholds subject to two constraints and executed comprehensive simulations to validate the model, which is founded upon Markovian equations. Our empirical findings reveal that enhancing detection efficiency, implementing rigorous travel restrictions, and reducing the transmission rate among regulated groups can effectively curtail the ultimate spread of the epidemic. However, we observed that the influence of travel restrictions weakens as the network’s average degree increases. Additionally, reducing the restriction parameter does not yield a higher threshold compared to when the mobility rate is low, as seen from a threshold perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data used are generated by the algorithms described in the article, or their sources are shown in the references.

References

  1. Cheng, Z.J., Zhan, Z., Xue, M., Zheng, P., Lyu, J., Ma, J., Zhang, X.D., Luo, W., Huang, H., Zhang, Y., et al.: Public health measures and the control of COVID-19 in China. Clin. Rev. Allergy Immunol. 1–16 (2021)

  2. Kraemer, M.U., Yang, C.H., Gutierrez, B., Wu, C.H., Klein, B., Pigott, D.M., et al.: The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368(6490), 493–497 (2020)

    Article  Google Scholar 

  3. Duan, W., Fan, Z., Zhang, P., Guo, G., Qiu, X.: Mathematical and computational approaches to epidemic modeling: a comprehensive review. Front. Comput. Sci. 9, 806–826 (2015)

    Article  Google Scholar 

  4. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  MathSciNet  Google Scholar 

  5. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  Google Scholar 

  6. Chung, F., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees. Internet Math. 1(3), 257–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karrer, B., Newman, M.E.: Message passing approach for general epidemic models. Phys. Rev. E 82(1), 016101 (2010)

    Article  MathSciNet  Google Scholar 

  8. Mata, A.S., Ferreira, S.C.: Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks. Europhys. Lett. 103(4), 48003 (2013)

    Article  Google Scholar 

  9. Karrer, B., Newman, M.E., Zdeborová, L.: Percolation on sparse networks. Phys. Rev. Lett. 113(20), 208702 (2014)

    Article  Google Scholar 

  10. Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), 890–906 (2012)

    Article  Google Scholar 

  11. Barbosa, H., Barthelemy, M., Ghoshal, G., James, C.R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M.: Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colizza, V., Vespignani, A.: Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 99(14), 148701 (2007)

    Article  Google Scholar 

  13. Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3(4), 276–282 (2007)

    Article  Google Scholar 

  14. Soriano-Paños, D., Cota, W., Ferreira, S.C., Ghoshal, G., Arenas, A., Gómez-Gardeñes, J.: Modeling communicable diseases, human mobility, and epidemics: a review. Ann. Phys. 534(6), 2100482 (2022)

    Article  MathSciNet  Google Scholar 

  15. Soriano-Paños, D., Lotero, L., Arenas, A., Gómez-Gardeñes, J.: Spreading processes in multiplex metapopulations containing different mobility networks. Phys. Rev. X 8(3), 031039 (2018)

    Google Scholar 

  16. Han, D., Shao, Q., Li, D.: Exploring the epidemic spreading in a multilayer metapopulation network by considering individuals’ periodic travelling. Complexity 2020, 1–9 (2020)

    MATH  Google Scholar 

  17. Huang, J., Chen, C.: Metapopulation epidemic models with a universal mobility pattern on interconnected networks. Phys. A Stat. Mech. Appl. 591, 126692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, S.Y., Baronchelli, A., Perra, N.: Contagion dynamics in time-varying metapopulation networks. Phys. Rev. E 87(3), 032805 (2013)

    Article  Google Scholar 

  19. Wang, B., Yang, L., Han, Y.: Intervention strategies for epidemic spreading on bipartite metapopulation networks. Phys. Rev. E 105(6), 064305 (2022)

    Article  MathSciNet  Google Scholar 

  20. Valgañón, P., Soriano-Paños, D., Arenas, A., Gómez-Gardeñes, J.: Contagion-diffusion processes with recurrent mobility patterns of distinguishable agents. Chaos Interdiscip. J. Nonlinear Sci. 32(4), 043102 (2022)

    Article  MathSciNet  Google Scholar 

  21. Gao, S., Dai, X., Wang, L., Perra, N., Wang, Z.: Epidemic spreading in metapopulation networks coupled with awareness propagation. IEEE Trans. Cybern. (2022)

  22. Nie, Y., Zhong, X., Lin, T., Wang, W.: Pathogen diversity in meta-population networks. Chaos Solitons Fractals 166, 112909 (2023)

    Article  MathSciNet  Google Scholar 

  23. Shao, Q., Han, D.: Epidemic spreading in metapopulation networks with heterogeneous mobility rates. Appl. Math. Comput. 412, 126559 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Gong, Y.W., Song, Y.R., Jiang, G.P.: Epidemic spreading in metapopulation networks with heterogeneous infection rates. Phys. A Stat. Mech. Appl. 416, 208–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Soriano-Paños, D., Arias-Castro, J.H., Reyna-Lara, A., Martínez, H.J., Meloni, S., Gómez-Gardeñes, J.: Vector-borne epidemics driven by human mobility. Phys. Rev. Res. 2(1), 013312 (2020)

    Article  Google Scholar 

  26. Wang, J., Han, D.: Epidemic spreading on metapopulation networks considering indirect contact. Phys. A Stat. Mech. Appl. 128722 (2023)

  27. Zhu, X., Liu, Y., Wang, S., Wang, R., Chen, X., Wang, W.: Allocating resources for epidemic spreading on metapopulation networks. Appl. Math. Comput. 411, 126531 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, K., Han, Y., Gou, M., Wang, B.: Intervention of resource allocation strategies on spatial spread of epidemics. Phys. Rev. E 105(6), 064308 (2022)

    Article  MathSciNet  Google Scholar 

  29. Hurford, A., Rahman, P., Loredo-Osti, J.C.: Modelling the impact of travel restrictions on COVID-19 cases in Newfoundland and Labrador. R. Soc. Open Sci. 8(6), 202266 (2021)

    Article  Google Scholar 

  30. Li, Y., Hou, S., Zhang, Y., Liu, J., Fan, H., Cao, C.: Effect of travel restrictions of Wuhan city against COVID-19: a modified SEIR model analysis. Disaster Med. Public Health Prep. 16(4), 1431–1437 (2022)

    Article  Google Scholar 

  31. Russell, T.W., Wu, J.T., Clifford, S., Edmunds, W.J., Kucharski, A.J., Jit, M., et al.: Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health 6(1), e12–e20 (2021)

    Article  Google Scholar 

  32. Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, K., Rossi, L., Sun, K., et al.: The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368(6489), 395–400 (2020)

  33. Mugnaine, M., Gabrick, E.C., Protachevicz, P.R., Iarosz, K.C., de Souza, S.L., Almeida, A.C., Batista, A.M., Caldas, I.L., Szezech, J.D., Jr., Viana, R.L.: Control attenuation and temporary immunity in a cellular automata SEIR epidemic model. Chaos Solitons Fractals 155, 111784 (2022)

  34. Hong, X., Han, Y., Wang, B.: Impacts of self-initiated behavioral responses and pandemic fatigue on the epidemic spread in time-varying multiplex networks. Chaos Solitons Fractals 173, 113696 (2023)

    Article  MathSciNet  Google Scholar 

  35. Hong, X., Han, Y., Wang, B.: Impacts of detection and contact tracing on the epidemic spread in time-varying networks. Appl. Math. Comput. 439, 127601 (2023)

    MathSciNet  MATH  Google Scholar 

  36. Silva, D.H., Anteneodo, C., Ferreira, S.C.: Epidemic outbreaks with adaptive prevention on complex networks. Commun. Nonlinear Sci. Numer. Simul. 116, 106877 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hong, X., Han, Y., Wang, B.: Integrated extensive detection, contact tracing and dynamical social distancing interventions to prevent future epidemic waves. IEEE Trans. Syst. Man Cybern. Syst. (2023)

  38. Feng, S., Jin, Z.: Infectious diseases spreading on an adaptive metapopulation network. IEEE Access 8, 153425–153435 (2020)

    Article  Google Scholar 

  39. Ni, S., Weng, W.: Impact of travel patterns on epidemic dynamics in heterogeneous spatial metapopulation networks. Phys. Rev. E 79(1), 016111 (2009)

    Article  Google Scholar 

  40. Granell, C., Mucha, P.J.: Epidemic spreading in localized environments with recurrent mobility patterns. Phys. Rev. E 97(5), 052302 (2018)

    Article  Google Scholar 

  41. Gómez-Gardeñes, J., Soriano-Panos, D., Arenas, A.: Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks. Nat. Phys. 14(4), 391–395 (2018)

    Article  Google Scholar 

  42. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com

Download references

Funding

We acknowledge partial financial support by the National Natural Science Foundation of China (Grant No. 72243005), Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (20YJC630059), Natural Science Foundation of Shanghai (21ZR1404700). In addition, we would like to thank the anonymous reviewers for their contributions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization, methodology, theoretical analysis, software and visualization. The first draft of the manuscript was written by Dun Han and Juquan Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dun Han.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Wang, J. The effects of travel restrictions and detection measures on epidemic spreading in a metapopulation network. Nonlinear Dyn 111, 20511–20524 (2023). https://doi.org/10.1007/s11071-023-08902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08902-z

Keywords

Navigation