Skip to main content
Log in

Online regulation of walking gait speed for a five-link bipedal robot via adaptive deforming of virtual holonomic constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Bipedal robots with instantaneous impact form a subclass of the dynamic systems with hybrid and under-actuation properties. Because of these two complex properties, finding an effective control method to show a rule base motion is difficult. In particular, few works are focused on how to regulate gait speed based on analytical stability and its own model which boost the robustness and accuracy. This is, thereby, still an open and challenging issue. In this paper, we present a solution for online regulating walking gait speed of bipedal robot based on its model while simultaneously stabilizing a closed orbit in the constraint manifold space. Suitable paths are therefore taken as the virtual holonomic constraints, which are then characterized by some parameters. By proposing a stability theorem, a hierarchical controller is designed in two levels. At the low level, the controller stabilizes the constraints as an output of the system state space, thereby creating the constraint manifold. In order to achieve the desired gait speed, the high-level controller adaptively deforms this manifold through the characterization parameters. In this design, the robustness of the controller is taken into consideration to prevent the system from being affected by disturbances. Simulation results show that the control method has a good performance and works smoothly in regulating the robot gait speed. Furthermore, the robot is also resistant to disturbance during movement and performs a stable motion over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The manuscript has no associated data.

References

  1. Lim, I.-S., Kwon, O., Park, J.H.: Gait optimization of biped robots based on human motion analysis. Robot. Auton. Syst. 62(2), 229–240 (2014)

    Google Scholar 

  2. D. C. Post, Robustness and efficiency of planar biped walking robots. University of Notre Dame, 2013.

  3. Cao, L., Chen, Y.F., Liu, J.: Semi-analytical approach for analyzing walking load. Nonlinear Dyn. 105(2), 1483–1501 (2021)

    Google Scholar 

  4. Rahmani, M., Ghanbari, A., Ettefagh, M.M.: A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. J. Vib. Control 24(10), 2045–2060 (2018)

    MathSciNet  Google Scholar 

  5. Wang, H., Zhang, H., Wang, Z., Chen, Q.: Finite-time stabilization of periodic orbits for under-actuated biped walking with hybrid zero dynamics. Commun. Nonlinear Sci. Numer. Simul. 80, 104949 (2020)

    MathSciNet  MATH  Google Scholar 

  6. He, B., Wang, S., Liu, Y.: Underactuated robotics—a review. Int. J. Adv. Rob. Syst. 16(4), 1729881419862164 (2019)

    Google Scholar 

  7. Znegui, W., Gritli, H., Belghith, S.: Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map. Nonlinear Dyn. 101(2), 1061–1091 (2020)

    MATH  Google Scholar 

  8. Vatankhah, M., Kobravi, H.R., Ritter, A.: Intermittent control model for ascending stair biped robot using a stable limit cycle model. Robot. Auton. Syst. 121, 103255 (2019)

    Google Scholar 

  9. Sidorov, E., Zacksenhouse, M.: Lyapunov based estimation of the basin of attraction of Poincare maps with applications to limit cycle walking. Nonlinear Anal. Hybrid Syst 33, 179–194 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Gritli, H., Belghith, S., Khraief, N.: OGY-based control of chaos in semi-passive dynamic walking of a torso-driven biped robot. Nonlinear Dyn. 79(2), 1363–1384 (2015)

    MATH  Google Scholar 

  11. Liu, D.-J., Tian, Y.-T.: Energy shaping control of biped walking robot. Control Theory Appl. 29(10), 1301–1308 (2012)

    Google Scholar 

  12. Lv, G., Gregg, R.D.: Underactuated potential energy shaping with contact constraints: application to a powered knee-ankle orthosis. IEEE Trans. Control Syst. Technol. 26(1), 181–193 (2017)

    Google Scholar 

  13. Spong, M.W., Holm, J.K., Lee, D.: Passivity-based control of bipedal locomotion. IEEE Robot. Autom. Mag. 14(2), 30–40 (2007)

    Google Scholar 

  14. Luo, R.C., Chen, C.C.: Biped walking trajectory generator based on three-mass with angular momentum model using model predictive control. IEEE Trans. Industr. Electron. 63(1), 268–276 (2015)

    Google Scholar 

  15. Luo, R.C., Chen, C.C.: Quasi-natural humanoid robot walking trajectory generator based on five-mass with angular momentum model. IEEE Trans. Ind. Electron. 65(4), 3355–3364 (2017)

    Google Scholar 

  16. Bailly, F., Carpentier, J., Benallegue, M., Watier, B., Souères, P.: Estimating the center of mass and the angular momentum derivative for legged locomotion—a recursive approach. IEEE Robot. Autom. Lett. 4(4), 4155–4162 (2019)

    Google Scholar 

  17. Mandava, R.K., Vundavilli, P.R.: An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms. Evol. Intel. 12(1), 33–48 (2019)

    Google Scholar 

  18. Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647–1664 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Hamed, K.A., Buss, B.G., Grizzle, J.W.: Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: Application to bipedal locomotion with ground height variations. Int. J. Robot. Res. 35(8), 977–999 (2016)

    Google Scholar 

  20. Zhang, C., Zou, W., Ma, L., Wang, Z.: Biologically inspired jumping robots: a comprehensive review. Robot. Auton. Syst. 124, 103362 (2020)

    Google Scholar 

  21. Chen, X., Yu, Z., Zhang, W., Zheng, Y., Huang, Q., Ming, A.: Bioinspired control of walking with toe-off, heel-strike, and disturbance rejection for a biped robot. IEEE Trans. Ind. Electron. 64(10), 7962–7971 (2017)

    Google Scholar 

  22. Rodriguez-Cianca, D., et al.: A variable stiffness actuator module with favorable mass distribution for a bio-inspired biped robot. Front. Neurorobot. 13, 20 (2019)

    Google Scholar 

  23. Koolen, T., De Boer, T., Rebula, J., Goswami, A., Pratt, J.: Capturability-based analysis and control of legged locomotion, Part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31(9), 1094–1113 (2012)

    Google Scholar 

  24. Kajita, S., Tani, K.: Experimental study of biped dynamic walking. IEEE Control. Syst. 16(1), 13–19 (1996)

    Google Scholar 

  25. Bae, H., Oh, J.-H.: Biped robot state estimation using compliant inverted pendulum model. Robot. Auton. Syst. 108, 38–50 (2018)

    Google Scholar 

  26. Beigzadeh, B., Sabaapour, M.R., Yazdi, M.R.H., Raahemifar, K.: From a 3d passive biped walker to a 3d passivity-based controlled robot. Int. J. Humanoid Robot. 15(04), 1850009 (2018)

    Google Scholar 

  27. Henze, B., Roa, M.A., Ott, C.: Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact scenarios. Int. J. Robot. Res. 35(12), 1522–1543 (2016)

    Google Scholar 

  28. Yeatman, M., Lv, G., Gregg, R.D.: Decentralized passivity-based control with a generalized energy storage function for robust biped locomotion. J. Dyn. Syst., Meas., Control 141(10), 101007 (2019)

    Google Scholar 

  29. Taherkhorsandi, M., Mahmoodabadi, M., Talebipour, M., Castillo-Villar, K.: Pareto design of an adaptive robust hybrid of PID and sliding control for a biped robot via genetic algorithm optimization. Nonlinear Dyn. 79(1), 251–263 (2015)

    Google Scholar 

  30. Yang, L., Liu, Z., Chen, Y.: Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm. ISA Trans. 87, 143–153 (2019)

    Google Scholar 

  31. Gasparri, G.M., et al.: Efficient walking gait generation via principal component representation of optimal trajectories: application to a planar biped robot with elastic joints. IEEE Robot. Autom. Lett. 3(3), 2299–2306 (2018)

    Google Scholar 

  32. Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, London (2018)

    Google Scholar 

  33. Plestan, F., Grizzle, J.W., Westervelt, E.R., Abba, G.: Stable walking of a 7-DOF biped robot. IEEE Trans. Robot. Autom. 19(4), 653–668 (2003)

    Google Scholar 

  34. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46(1), 51–64 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Grizzle, J. W. and Chevallereau, C.: Virtual constraints and hybrid zero dynamics for realizing underactuated bipedal locomotion. arXiv preprint arXiv:1706.01127, 2017.

  36. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Morris, B., Grizzle, J.W.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54(8), 1751–1764 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Grizzle, J.: Remarks on event-based stabilization of periodic orbits in systems with impulse effects. In: Second International Symposium on Communications, Control and Signal Processing, 2006

  39. Morris, B. and Grizzle, J. W.: A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: application to bipedal robots. In: Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC′05. 44th IEEE Conference on, 2005: IEEE, pp. 4199–4206

  40. Hu, Y., Yan, G., Lin, Z.: Feedback control of planar biped robot with regulable step length and walking speed. IEEE Trans. Robot. 27(1), 162–169 (2010)

    Google Scholar 

  41. Huang, Y., Wang, Q.: Gait selection and transition of passivity-based bipeds with adaptable ankle stiffness. Int. J. Adv. Robot. Syst. 9(4), 99 (2012)

    Google Scholar 

  42. Geng, T.: Online regulation of the walking speed of a planar limit cycle walker via model predictive control. IEEE Trans. Ind. Electron. 61(5), 2326–2333 (2013)

    Google Scholar 

  43. Luo, X., Zhu, L., Xia, L.: Principle and method of speed control for dynamic walking biped robots. Robot. Auton. Syst. 66, 129–144 (2015)

    Google Scholar 

  44. Kobayashi, T., Aoyama, T., Hasegawa, Y., Sekiyama, K., Fukuda, T.: Adaptive speed controller using swing leg motion for 3-D limit-cycle-based bipedal gait. Nonlinear Dyn. 84(4), 2285–2304 (2016)

    MathSciNet  Google Scholar 

  45. Veer, S., Motahar, M. S., and Poulakakis, I.: Generation of and switching among limit-cycle bipedal walking gaits. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017: IEEE, pp. 5827–5832

  46. Veer, S., Motahar, M. S., and Poulakakis, I.: Adaptation of limit-cycle walkers for collaborative tasks: a supervisory switching control approach. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017: IEEE, pp. 5840–5845

  47. Mohammadi, A., Maggiore, M., Consolini, L.: Dynamic virtual holonomic constraints for stabilization of closed orbits in underactuated mechanical systems. Automatica 94, 112–124 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Freidovich, L.B., Mettin, U., Shiriaev, A.S., Spong, M.W.: A passive 2-DOF walker: hunting for gaits using virtual holonomic constraints. IEEE Trans. Robot. 25(5), 1202–1208 (2009)

    Google Scholar 

  49. Kakaei, M.M., Salarieh, H.: New robust control method applied to the locomotion of a 5-link biped robot. Robotica 38(11), 2023–2038 (2020)

    Google Scholar 

  50. Salarieh, H.: A novel robust control method for three-link underactuated planar biped robot. Modares Mech. Eng. 17(11), 47–58 (2018)

    Google Scholar 

  51. Veer, S., Poulakakis, I.: Input-to-state stability of periodic orbits of systems with impulse effects via Poincaré analysis. IEEE Trans. Autom. Control 64(11), 4583–4598 (2019)

    MATH  Google Scholar 

  52. Rogers, D.F.: Mathematical elements for computer graphics. McGraw-Hill, New York (1990)

    Google Scholar 

  53. Gupta, S., Kumar, A.: A brief review of dynamics and control of underactuated biped robots. Adv. Robot. 31, 1–17 (2017)

    Google Scholar 

  54. Kant, N., Mukherjee, R.: Orbital stabilization of underactuated systems using virtual holonomic constraints and impulse controlled Poincaré maps. Syst. Control Lett. 146, 104813 (2020)

    MATH  Google Scholar 

  55. El-Hawwary, M.I., Maggiore, M.: Reduction theorems for stability of closed sets with application to backstepping control design. Automatica 49(1), 214–222 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Maggiore, M., Consolini, L.: Virtual holonomic constraints for Euler-Lagrange systems. IEEE Trans. Autom. Control 58(4), 1001–1008 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Khalil, H.K.: Nonlinear systems third edition, p. 115. Patience Hall, Hoboken (2002)

    Google Scholar 

  58. Slotine, J.-J.E., Li, W.: Applied nonlinear control. Prentice hall Englewood Cliffs, Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

  59. Vidyasagar, M.: Nonlinear systems analysis. SIAM, 2002

  60. Yazdani, M., Salarieh, H., Foumani, M.S.: Bio-inspired decentralized architecture for walking of a 5-link biped robot with compliant knee joints. Int. J. Control Autom. Syst. 16(6), 2935–2947 (2018)

    Google Scholar 

  61. Yazdani, M., Salarieh, H., Foumani, M.S.: Decentralized control of rhythmic activities in fully-actuated/under-actuated robots. Robot. Auton. Syst. 101, 20–33 (2018)

    Google Scholar 

Download references

Acknowledgements

M.M. Kakaei and H. Salarieh were supported by the Iran National Science Foundation (INFS).

Funding

There is no funding for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Salarieh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakaei, M.M., Salarieh, H. & Sohrabpour, S. Online regulation of walking gait speed for a five-link bipedal robot via adaptive deforming of virtual holonomic constraints. Nonlinear Dyn 111, 20055–20071 (2023). https://doi.org/10.1007/s11071-023-08901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08901-0

Keywords

Navigation