Skip to main content
Log in

Robust fault accommodation approach for double-pendulum tower cranes via adaptive neural network-triggered control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a novel fault accommodation approach is designed for double-pendulum tower crane systems with both actuator drift and loss of efficiency. Importantly, a unique disturbance effect indicator is introduced to purposely judge the advantages and disadvantages of disturbances’ effects (including actuator faults, unknown/uncertain dynamics, unmodeled dynamics, and external disturbances) on the double-pendulum tower crane system. By employing the estimated disturbance, an adaptive neural network-triggered tracking strategy is subsequently developed. Additionally, utilizing the Lyapunov method and Barbalat’s lemma, the entire system stability is theoretically proven without any linearization around the equilibrium of original complicated nonlinear dynamics of tower cranes. The designed control strategy is not only able to deal with the double-pendulum swing dynamics, but also introduces a disturbance indicator for the first time to improve the tracking control performance by the positive disturbance effect. Several experimental results indicate that the designed strategy can achieve graceful degradation in tracking performance for the fault-tolerant system by employing the beneficial actuator faults, unknown/uncertain dynamics, unmodeled dynamics, and external disturbances while eliminating detrimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zhang, M., Zhang, Y., Ji, B., Ma, C., Cheng, X.: Adaptive sway reduction for tower crane systems with varying cable lengths. Autom. Constr. 119, 103342 (2020). https://doi.org/10.1016/j.autcon.2020.103342

    Article  Google Scholar 

  2. Peng, J., Huang, J., Singhose, W.: Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions. Nonlinear Dyn. 98, 1041–1048 (2019). https://doi.org/10.1007/s11071-019-05247-4

    Article  Google Scholar 

  3. Wu, Z., Xia, X.: Optimal motion planning for overhead cranes. IET Control Theory Appl. 8(17), 1833–1842 (2014). https://doi.org/10.1049/iet-cta.2014.0069

    Article  Google Scholar 

  4. Zhang, X., Fang, Y., Sun, N.: Minimum-time trajectory planning for underactuated overhead crane systems with state and control constraints. IEEE Trans. Ind. Electron. 61(12), 6915–6925 (2014). https://doi.org/10.1109/TIE.2014.2320231

    Article  Google Scholar 

  5. Pan, H., Jing, X., Sun, W., Gao, H.: A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems. IEEE Trans. Control Syst. Technol. 26(3), 903–914 (2018). https://doi.org/10.1109/TCST.2017.2699158

    Article  Google Scholar 

  6. Kim, G.H., Hong, K.S.: Adaptive sliding-mode control of an offshore container crane with unknown disturbances. IEEE/ASME Trans. Mechatron. 24(6), 2850–2861 (2019). https://doi.org/10.1109/TMECH.2019.2946083

    Article  Google Scholar 

  7. Cahyono, R.T., Flonk, E.J., Jayawardhana, B.: Discrete-event systems modeling and the model predictive allocation algorithm for integrated berth and quay crane allocation. IEEE Trans. Intell. Transp. Syst. 21(3), 1321–1331 (2020). https://doi.org/10.1109/TITS.2019.2910283

    Article  Google Scholar 

  8. Zhou, Q., Wang, W., Ma, H., Li, H.: Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc–Wen hysteresis input. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2961642

    Article  Google Scholar 

  9. Ye, J., Codjevac, M., Baldi, S., Hopman, H.: Joint estimation of vessel position and mooring stiffness during offshore crane operations. Autom. Constr. 101, 218–226 (2019). https://doi.org/10.1016/j.autcon.2019.01.011

    Article  Google Scholar 

  10. Le, A.T.: Neural observer and adaptive fractional-order back stepping fast terminal sliding mode control of RTG cranes. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2019.2962450

    Article  Google Scholar 

  11. Mar, R., Goyal, A., Nguyen, V., Yang, T., Singhose, W.: Combined input shaping and feedback control for double-pendulum systems. Mech. Syst. Signal Process. 85, 267–277 (2017). https://doi.org/10.1016/j.ymssp.2016.08.012

    Article  Google Scholar 

  12. Chentouf, B., Han, Z.: On the stabilization of an overhead crane system with dynamic and delayed boundary conditions. IEEE Trans. Autom. Control 65(10), 4273–4280 (2020). https://doi.org/10.1109/TAC.2019.2953782

    Article  MathSciNet  MATH  Google Scholar 

  13. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66, 146–154 (2016). https://doi.org/10.1016/j.automatica.2015.12.026

    Article  MathSciNet  MATH  Google Scholar 

  14. Ouyang, H., Wu, X., Zhang, G.: Tracking and load sway reduction for double-pendulum rotary cranes using adaptive nonlinear control approach. Int. J. Robust Nonlinear Control 30(5), 1872–1885 (2020). https://doi.org/10.1002/rnc.4854

    Article  MathSciNet  MATH  Google Scholar 

  15. Qian, Y., Fang, Y., Lu, B.: Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances. Mech. Syst. Signal Process. 114, 556–570 (2019). https://doi.org/10.1016/j.ymssp.2018.05.009

    Article  Google Scholar 

  16. Le, A.T., Lee, S.G.: 3D cooperative control of tower cranes using robust adaptive techniques. J. Franklin Inst. 354(18), 8333–8357 (2017). https://doi.org/10.1016/j.jfranklin.2017.10.026

    Article  MathSciNet  MATH  Google Scholar 

  17. Ju, F., Choo, Y.S., Cui, F.S.: Dynamic response of tower crane induced by the pendulum motion of the payload. Int. J. Solids Struct. 43(2), 376–389 (2006). https://doi.org/10.1016/j.ijsolstr.2005.03.078

    Article  MATH  Google Scholar 

  18. Omar, H.M., Nayfeh, A.H.: Gain scheduling feedback control of tower cranes with friction compensation. J. Vib. Control 10(2), 269–289 (2004). https://doi.org/10.1177/107754604773732188

    Article  Google Scholar 

  19. Böck, M., Kugi, A.: Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans. Control Syst. Technol. 22(4), 1461–1473 (2014). https://doi.org/10.1109/TCST.2013.2280464

    Article  Google Scholar 

  20. Duong, S.C., Uezato, E., Kinjo, H., Yamamoto, T.: A hybrid evolutionary algorithm for recurrent neural network control of a three-dimensional tower crane. Autom. Constr. 23, 55–63 (2012). https://doi.org/10.1016/j.autcon.2011.12.005

    Article  Google Scholar 

  21. Sun, N., Fang, Y., Chen, H., Lu, B., Fu, Y.: Slew/translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: design and hardware experimentation. IEEE Trans. Ind. Electron. 63(10), 6407–6418 (2016). https://doi.org/10.1109/TIE.2016.2587249

    Article  Google Scholar 

  22. Vaughan, J., Kim, D., Singhose, W.: Control of tower cranes with double-pendulum payload dynamics. IEEE Trans. Control Syst. Technol. 18(6), 1345–1358 (2010). https://doi.org/10.1109/TCST.2010.2040178

    Article  Google Scholar 

  23. Zhang, M., Zhang, Y., Ji, B., Ma, C., Cheng, X.: Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects. Meas. Control 53(1–2), 141–150 (2020). https://doi.org/10.1177/0020294019877492

    Article  Google Scholar 

  24. Zhang, M., Jing, X.: Adaptive neural network tracking control for double-pendulum tower crane systems with non-ideal inputs. IEEE Trans. Syst. Man Cybern. Syst. 52(4), 2514–2530 (2022). https://doi.org/10.1109/TSMC.2020.3048722

    Article  Google Scholar 

  25. Guo, Z., Guo, J., Zhou, J., Chang, J.: Robust tracking for hypersonic reentry vehicles via disturbance estimation-triggered control. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1279–1289 (2020). https://doi.org/10.1109/TAES.2019.2928605

    Article  Google Scholar 

  26. Yang, Y., Ye, X., Wen, B., Huang, J., Su, X.: Adaptive control design for uncertain underactuated cranes with nonsmooth input nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. (2023). https://doi.org/10.1109/TSMC.2022.3192754

    Article  Google Scholar 

  27. Yao, L., Wu, Y.: Robust fault diagnosis and fault-tolerant control for uncertain multiagent systems. Int. J. Robust Nonlinear Control 30(18), 8192–8205 (2020). https://doi.org/10.1002/rnc.5228

    Article  MathSciNet  Google Scholar 

  28. Xu, B., Guo, Y., Yuan, Y., Fan, Y., Wang, D.: Fault-tolerant control using command-filtered adaptive back-stepping technique: application to hypersonic longitudinal flight dynamics. Int. J. Adapt. Control Signal Process. 30(4), 553–577 (2016). https://doi.org/10.1002/acs.2596

    Article  MathSciNet  Google Scholar 

  29. Giusti, A., Liu, S.B., Althoff, M.: Interval-arithmetic-based robust control of fully actuated mechanical systems. IEEE Trans. Control Syst. Technol. 30(4), 1525–1537 (2022). https://doi.org/10.1109/TCST.2021.3118488

    Article  Google Scholar 

  30. Su, X., Jiang, Y., Jia, Y.: Modeling and robust decoupling control for hypersonic scramjet vehicle. Artif. Life Robot. 18(1–2), 58–63 (2013). https://doi.org/10.1007/s10015-013-0099-8

    Article  Google Scholar 

  31. Jiang, J., Yu, X.: Fault-tolerant control systems: a comparative study between active and passive approaches. Annu. Rev. Control 36(1), 60–72 (2012)

    Article  Google Scholar 

  32. Chang, J., Guo, Z., Cieslak, J., Henry, D.: Robust fault accommodation strategy of the reentry vehicle: a disturbance estimate-triggered approach. Nonlinear Dyn. 103, 2605–2625 (2021). https://doi.org/10.1007/s11071-021-06237-1

    Article  MATH  Google Scholar 

  33. Hamayun, M.T., Edwards, C., Alwi, H.: An augmentation scheme for fault tolerant control using integral sliding modes. In: Fault Tolerant Control Schemes Using Integral Sliding Modes. Studies in Systems, Decision and Control, vol. 61, pp. 103–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32238-4_6

  34. Fang, Y., Ma, B., Wang, P., Zhang, X.: A motion planning-based adaptive control method for an underactuated crane system. IEEE Trans. Control Syst. Technol. 20(1), 241–248 (2012). https://doi.org/10.1109/TCST.2011.2107910

    Article  Google Scholar 

  35. Sun, W., Su, S., Xia, J., Wu, Y.: Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE Trans. Cybern. 50(5), 1867–1876 (2020). https://doi.org/10.1109/TCYB.2018.2884707

    Article  Google Scholar 

  36. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 62273163); the General Research Fund of Hong Kong RGC (11202323); the Startup Fund of City University of Hong Kong (Grant Number 9380140); the Key R&D Project of Shandong Province (Grant Number 2022CXGC010503); the Youth Foundations of Shandong Province (Grant Number ZR202102230323); and the Project of Shandong Province Higher Educational Youth and Innovation Talent Introduction and Education Program.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, controller design, and stability analysis were performed by MZ and XJ. The first draft of the manuscript was written by MZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xingjian Jing.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Jing, X., Huang, W. et al. Robust fault accommodation approach for double-pendulum tower cranes via adaptive neural network-triggered control. Nonlinear Dyn 111, 19993–20013 (2023). https://doi.org/10.1007/s11071-023-08891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08891-z

Keywords

Navigation