Skip to main content
Log in

Fast fixed-time sliding mode control of a bistable dual-stage vibration isolator with disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Despite that multistable isolators have been demonstrated to achieve the superior isolation performance compared with the linear ones, their performances are still inferior at ultra-low frequencies with the multi-solution phenomenon. Furthermore, their performances are dependent on the variation of initial conditions. Therefore, this paper proposes a fast fixed-time sliding mode controller to solve the ineffectiveness of the bistable dual-stage vibration isolator with external disturbances facing the above issues. Firstly, the bistable dual-stage isolator is modelled in the analytical form, and simulated compared with its linear counterpart to show its problems at some conditions. Secondly, the fast fixed-time sliding mode controller is presented with the modeling of sliding manifold and control inputs. Thirdly, the numerical simulation of the bistable dual-stage isolator with the proposed control is conducted, the results of which are compared with the finite-time sliding mode control. Finally, the outstanding feature of the proposed controller is concluded that the short convergence time becomes bounded with increasing initial conditions at both low and high excitation amplitudes. This work provides a valuable method to improve the isolation performance and robustness of the multistable vibration isolators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, J., Xu, D., Zhou, J., Li, Y.: Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control. Chaos Solitons Fractals 45, 1255–1265 (2012)

    MathSciNet  Google Scholar 

  2. Li, Y., Xu, D., Fu, Y., Zhou, J.: Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control. Chaos Solitons Fractals 45, 1092–1099 (2012)

    MathSciNet  Google Scholar 

  3. Huang, D., Xu, W., Shi, L.: Response analysis and energy transmissibility of a vibration isolation system with real-power nonlinearities under a NMPPF controller. Chaos Solitons Fractals 87, 281–292 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Huang, D., Li, W., Yang, G., He, M.: Analysis of limit cycles and stochastic responses of a real-power vibration isolation system under delayed feedback control. Chaos Solitons Fractals 112, 125–134 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Ruzicka, J.E.: Active Vibration and Shock Isolation, pp. 2872–2886. SAE Transactions (1968)

    Google Scholar 

  6. Rakheja, S., Sankar, S.: Vibration and shock isolation performance of a semi-active “on-off” damper (1985)

  7. Wang, X., Liu, H., Chen, Y., Gao, P.: Beneficial stiffness design of a high-static-low-dynamic-stiffness vibration isolator based on static and dynamic analysis. Int. J. Mech. Sci. 142, 235–244 (2018)

    Google Scholar 

  8. Li, Y., Xu, D.: Spectrum reconstruction of quasi-zero stiffness floating raft systems. Chaos Solitons Fractals 93, 123–129 (2016)

    Google Scholar 

  9. Yang, K., Harne, R., Wang, K., Huang, H.: Investigation of a bistable dual-stage vibration isolator under harmonic excitation. Smart Mater. Struct. 23, 045033 (2014)

    Google Scholar 

  10. Yan, B., Ma, H., Zhang, L., Zheng, W., Wang, K., Wu, C.: A bistable vibration isolator with nonlinear electromagnetic shunt damping. Mech. Syst. Signal Process. 136, 106504 (2020)

    Google Scholar 

  11. Shaw, A., Neild, S., Wagg, D., Weaver, P., Carrella, A.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332, 6265–6275 (2013)

    Google Scholar 

  12. Ishida, S., Uchida, H., Shimosaka, H., Hagiwara, I.: Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. J. Vib. Acoust. 139, 031015 (2017)

  13. Mead, D.J.: Passive Vibration Control. Wiley (1998)

    MATH  Google Scholar 

  14. Lu, Z., Brennan, M.J., Yang, T., Li, X., Liu, Z.: An investigation of a two-stage nonlinear vibration isolation system. J. Sound Vib. 332, 1456–1464 (2013)

    Google Scholar 

  15. Yan, B., Yu, N., Ma, H., Wu, C.: A theory for bistable vibration isolators. Mech. Syst. Signal Process. 167, 108507 (2022)

    Google Scholar 

  16. Sun, X., Xu, J., Jing, X., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014)

    Google Scholar 

  17. Xu, J., Sun, X.: A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)

    Google Scholar 

  18. Heertjes, M.F., Sahin, I.H., Van De Wouw, N., Heemels, W.M.H.: Switching control in vibration isolation systems. IEEE Trans. Control Syst. Technol. 21, 626–635 (2012)

    Google Scholar 

  19. Coppola, G., Liu, K.: Control of a unique active vibration isolator with a phase compensation technique and automatic on/off switching. J. Sound Vib. 329, 5233–5248 (2010)

    Google Scholar 

  20. Huang, D., Zhou, S., Li, R., Yurchenko, D.: On the analysis of the tristable vibration isolation system with delayed feedback control under parametric excitation. Mech. Syst. Signal Process. 164, 108207 (2022)

    Google Scholar 

  21. Deepika, D., Kaur, S., Narayan, S.: Uncertainty and disturbance estimator based robust synchronization for a class of uncertain fractional chaotic system via fractional order sliding mode control. Chaos Solitons Fractals 115, 196–203 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, M., Zang, H., Bai, L.: A new predefined-time sliding mode control scheme for synchronizing chaotic systems. Chaos Solitons Fractals 164, 112745 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Jiang, J., Chen, H., Cao, D., Guirao, J.L.: The global sliding mode tracking control for a class of variable order fractional differential systems. Chaos Solitons Fractals 154, 111674 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Tabatabaei-Nejhad, S.Z., Eghtesad, M., Farid, M., Bazargan-Lari, Y.: Combination of fractional-order, adaptive second order and non-singular terminal sliding mode controls for dynamical systems with uncertainty and under-actuation property. Chaos Solitons Fractals 165, 112752 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Azhdari, M., Binazadeh, T.: A novel adaptive SMC strategy for sustained oscillations in nonlinear sandwich systems based on stable limit cycle approach. Chaos Solitons Fractals 161, 112330 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Cai, N., Li, W., Jing, Y.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64, 385–393 (2011)

    MathSciNet  Google Scholar 

  27. Sun, J., Wu, Y., Cui, G., Wang, Y.: Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 88, 1677–1690 (2017)

    MATH  Google Scholar 

  28. Bowong, S.: Adaptive synchronization between two different chaotic dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 12, 976–985 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Aghababa, M.P.: A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers. Appl. Math. Model. 39, 6103–6113 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Fang, S., Mirzaei, M.J., Asadollahi, M., Chen, K., Liao, W.-H.: Continuous finite-time sliding mode control for synchronization of perturbed bistable electrostatic and piezoelectric transducers with external disturbances. J. Vib. Control 29(9–10), 2392 (2022)

    Google Scholar 

  31. Pan, H., Sun, W., Gao, H., Yu, J.: Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Trans. Intell. Transp. Syst. 16, 2663–2672 (2015)

    Google Scholar 

  32. Du, M., Zhao, D., Yang, B., Wang, L.: Terminal sliding mode control for full vehicle active suspension systems. J. Mech. Sci. Technol. 32, 2851–2866 (2018)

    Google Scholar 

  33. Snamina, J., Orkisz, P.: Active vibration reduction system with mass damper tuned using the sliding mode control algorithm. J. Low Freq. Noise Vib. Active Control 40, 540–554 (2021)

    Google Scholar 

  34. Azimi, A., Bakhtiari-Nejad, F., Zhu, W.: Fractional-order control with second-order sliding mode algorithm and disturbance estimation for vibration suppression of marine riser. J. Frankl. Inst. 358, 6545–6565 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Humaidi, A.J., Sadiq, M.E., Abdulkareem, A.I., Ibraheem, I.K., Azar, A.T.: Adaptive backstepping sliding mode control design for vibration suppression of earth-quaked building supported by magneto-rheological damper. J. Low Freq. Noise Vib. Active Control 41, 768–783 (2022)

    Google Scholar 

  36. Wang, C., Zhou, X., Shi, X., Jin, Y.: Variable fractional order sliding mode control for seismic vibration suppression of uncertain building structure. J. Vib. Eng. Technol. 10, 299–312 (2022)

    Google Scholar 

  37. Parsegov, S., Polyakov, A., Shcherbakov, P.: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In: IEEE 51st IEEE Conference on Decision and Control (CDC), vol. 2012, pp. 7732–7737. IEEE (2012)

  38. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, X., Shi, R.: Novel fast fixed-time sliding mode trajectory tracking control for manipulator. Chaos Solitons Fractals 162, 112469 (2022)

    MathSciNet  Google Scholar 

  40. Zhang, L., Wei, C., Jing, L., Cui, N.: Fixed-time sliding mode attitude tracking control for a submarine-launched missile with multiple disturbances. Nonlinear Dyn. 93, 2543–2563 (2018)

    MATH  Google Scholar 

  41. Gong, W., Li, B., Yang, Y., Ban, H., Xiao, B.: Fixed-time integral-type sliding mode control for the quadrotor UAV attitude stabilization under actuator failures. Aerosp. Sci. Technol. 95, 105444 (2019)

    Google Scholar 

  42. Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn. 88, 2637–2649 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, L., Wang, Y., Hou, Y., Li, H.: Fixed-time sliding mode control for uncertain robot manipulators. IEEE Access 7, 149750–149763 (2019)

    Google Scholar 

  44. Hill, E.L.: Hamilton’s principle and the conservation theorems of mathematical physics. Rev. Mod. Phys. 23, 253 (1951)

    MathSciNet  MATH  Google Scholar 

  45. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43, 678–682 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51, 858–862 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57, 2106–2110 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Mirzaei, M.J., Aslmostafa, E., Asadollahi, M., Padar, N.: Fast fixed-time sliding mode control for synchronization of chaotic systems with unmodeled dynamics and disturbance; applied to memristor-based oscillator. J. Vib. Control 29(9–10), 2129 (2022)

    MathSciNet  Google Scholar 

  49. Mishra, J.P., Yu, X., Jalili, M.: Arbitrary-order continuous finite-time sliding mode controller for fixed-time convergence. IEEE Trans. Circuits Syst. II Express Briefs 65, 1988–1992 (2018)

Download references

Acknowledgements

This work was funded by National Natural Science Foundation of China (Grant Nos. 52205114, 52375112, 51905349, U2013603), Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2023A1515012921, 2022A1515010126, 2020A1515011509) Excellent Science and Technology Creative Talent Training Program of Shenzhen (Grant No. RCBS20221008093252089), Shenzhen Natural Sceience Fund (the Stable Support Plan Program 20220809181431001) and Natural Science Foundation of Shenzhen University (000002112410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Padar, N., Mirzaei, M.J. et al. Fast fixed-time sliding mode control of a bistable dual-stage vibration isolator with disturbances. Nonlinear Dyn 111, 19947–19962 (2023). https://doi.org/10.1007/s11071-023-08868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08868-y

Keywords

Navigation