Skip to main content
Log in

Cubic-quartic optical solitons of the complex Ginzburg-Landau equation: A novel approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a method for extracting cubic–quartic optical soliton solutions for the complex Ginzburg–Landau equation with five distinct forms of nonlinear refractive index. By utilizing the proposed algorithm, we can obtain a diverse range of optical solitons, including hybrid types, that satisfy the specified parameter restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. Khan, Y.: Fractal modification of complex Ginzburg–Landau model arising in the oscillating phenomena. Results Phys. 18, 103324 (2020)

    Article  Google Scholar 

  2. Kudryashov, N.A.: Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin. J. Phys. 66, 401–405 (2020)

    Article  MathSciNet  Google Scholar 

  3. Tsoy, E.N., Akhmediev, N.: Bifurcations from stationary to pulsating solitons in the cubic–quintic complex Ginzburg–Landau equation. Phys. Lett. A 343, 417–422 (2005)

    Article  MATH  Google Scholar 

  4. Sadaf, M., Akram, G., Arshed, S., Farooq, K.: A study of fractional complex Ginzburg–Landau model with three kinds of fractional operators. Chaos Solitons Fractals 166, 112976 (2023)

    Article  MathSciNet  Google Scholar 

  5. Liu, W., Yu, W., Yang, C., Liu, M., Zhang, Y., Lei, M.: Analytic solutions for the generalized complex Ginzburg–Landau equation in fiber lasers. Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  MathSciNet  Google Scholar 

  6. Yalçı, A.M., Ekici, M.: Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quantum Electron. 54, 167 (2022)

    Article  Google Scholar 

  7. Yue-Yue, W., Chao-Qing, D., Jie-Fang, Z.: Solitary wave solutions of discrete complex Ginzburg–Landau equation by modified Adomian decomposition method. Commun. Theor. Phys. 51, 81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhu, W., Xia, Y., Bai, Y.: Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Appl. Math. Comput. 382, 125342 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Selima, E.S., Seadawy, A.R., Yao, X., Essa, F.A.: Integrability of the coupled cubic–quintic complex Ginzburg–Landau equations and multiple-soliton solutions via mathematical methods. Mod. Phys. Lett. B 32, 1850045 (2018)

    Article  MathSciNet  Google Scholar 

  10. Liu, J.G., Li, Y.Z.: Transformations for the variable coefficient Ginzburg–Landau equation with symbolic computation. J. China Univ. Posts Telecommun. 13, 98–101 (2006)

    Article  Google Scholar 

  11. Du, R., Wang, Y., Hao, Z.: High-dimensional nonlinear Ginzburg–Landau equation with fractional Laplacian: discretization and simulations. Commun. Nonlinear Sci. Numer. Simul. 102, 105920 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, D., Dong, K.R., Zhang, J.R., Shen, Y.J.: Effect of near-symmetric potentials on nonlinear modes for higher-order generalized Ginzburg–Landau model. Commun. Theor. Phys. 74, 125001 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shwetanshumala, S.: Temporal solitons of modified complex Ginzburg–Landau equation. Prog. Electromagn. Res. Lett. 3, 17–24 (2008)

    Article  Google Scholar 

  14. Li, Z., Huang, C., Wang, B.: Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas–Lenells equation with cubic–quartic dispersion in optical fibers. Phys. Lett. A 465, 128714 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rabie, W.B., Ahmed, H.M.: Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov’s sextic power law using extended F-expansion method. Chaos Solitons Fractals 160, 112289 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Onder, I., Secer, A., Ozisik, M., Bayram, M.: Obtaining optical soliton solutions of the cubic–quartic Fokas–Lenells equation via three different analytical methods. Opt. Quantum Electron. 54, 786 (2022)

    Article  Google Scholar 

  17. Peng, C., Li, Z.: Dynamics and optical solitons in polarization-preserving fibers for the cubic-quartic complex Ginzburg–Landau equation with quadratic-cubic law nonlinearity. Results Phys. 51, 106615 (2023)

    Article  Google Scholar 

  18. Gao, W., Ismael, H.F., Husien, A.M., Bulut, H., Baskonus, H.M.: Optical soliton solutions of the cubic–quartic nonlinear Schrödinger and resonant nonlinear Schrödinger equation with the parabolic law. Appl. Sci. 10, 219 (2019)

    Article  Google Scholar 

  19. Zahran, E.H., Bekir, A.: New private types for the cubic-quartic optical solitons in birefringent fibers in its four forms of nonlinear refractive index. Opt. Quantum Electron. 53, 680 (2021)

    Article  Google Scholar 

  20. Kumar, V.: Optical solitons and modulation instability for Cubic–quartic Fokas–Lenells equation. Partial Differ. Equ. Appl. Math. 5, 100328 (2022)

    Article  Google Scholar 

  21. Ahmed, M.S., Zaghrout, A.A., Ahmed, H.M.: Exploration new solitons in fiber Bragg gratings with cubic-quartic dispersive reflectivity using improved modified extended tanh-function method. Eur. Phys. J. Plus 138, 32 (2023)

    Article  Google Scholar 

  22. El-Nabulsi, R.A., Anukool, W.: A generalized nonlinear cubic-quartic Schrödinger equation and its implications in quantum wire. Eur. Phys. J. B 96, 1–8 (2023)

    Article  Google Scholar 

  23. Başhan, A.: Solitary wave, undular-bore and wave-maker solutions of the cubic, quartic and quintic nonlinear generalized equal width (GEW) wave equation. Eur. Phys. J. Plus 138, 53 (2023)

    Article  Google Scholar 

  24. Mathanaranjan, T.: An effective technique for the conformable space-time fractional cubic-quartic nonlinear Schrödinger equation with different laws of nonlinearity. Comput. Math. Differ. Equ. 10, 701–715 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Uddin, M.F., Hafez, M.G.: Optical wave phenomena in birefringent fibers described by space-time fractional cubic-quartic nonlinear Schrödinger equation with the sense of beta and conformable derivative. Adv. Math. Phys. 2022, 7265164 (2022)

    Article  MATH  Google Scholar 

  26. Zayed, E.M., Shohib, R.M., Alngar, M.E.: Cubic-quartic nonlinear Schrödinger equation in birefringent fibers with the presence of perturbation terms. Waves Rand. Complex Media 32, 2445–2467 (2022)

    Article  MATH  Google Scholar 

  27. Debnath, A., Tarun, J., Khan, A.: Signature of supersolidity in a driven cubic-quartic nonlinear Schrödinger equation. J. Phys. B: At. Mol. Opt. Phys. 55, 025301 (2022)

    Article  Google Scholar 

  28. Peng, C., Li, Z., Zhao, H.: New exact solutions to the Lakshmanan–Porsezian–Daniel equation with Kerr law of nonlinearity. Math. Probl. Eng. 2022, 7340373 (2022)

    Article  Google Scholar 

  29. Zhou, Q., Zhu, Q.: Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. Waves Rand. Complex Media 25, 52–59 (2015)

    Article  MATH  Google Scholar 

  30. Khalil, T.A., Badra, N., Ahmed, H.M., Rabie, W.B.: Bright solitons for twin-core couplers and multiple-core couplers having polynomial law of nonlinearity using Jacobi elliptic function expansion method. Alex. Eng. J. 61, 11925–11934 (2022)

  31. Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scripta 98, 035216 (2023)

    Article  Google Scholar 

  32. Al-Amr, M.O., Rezazadeh, H., Ali, K.K., Korkmazki, A.: N1-soliton solution for Schrödinger equation with competing weakly nonlocal and parabolic law nonlinearities. Commun. Theor. Phys. 72, 065503 (2020)

    Article  MATH  Google Scholar 

  33. Zhou, Q., Yao, D., Liu, X., Ding, S., Zhang, Y., Chen, F.: Exact solitons in three-dimensional weakly nonlocal nonlinear time-modulated parabolic law media. Opt. Laser Technol. 51, 32–35 (2013)

    Article  Google Scholar 

  34. Younis, M., Sardar, A., Rizvi, S.T.R., Zhou, Q.: Exact solitons in a medium with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. J. Nonlinear Opt. Phys. Mater. 24, 1550049 (2015)

    Article  Google Scholar 

  35. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+ 1)-and (2+ 1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Article  Google Scholar 

  36. Wazwaz, A.M.: Integrable (3+ 1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. 109, 1929–1934 (2022)

    Article  Google Scholar 

  37. Wazwaz, A.M.: Multi-soliton solutions for integrable (3+ 1)-dimensional modified seventh-order Ito and seventh-order Ito equations. Nonlinear Dyn. 110, 3713–3720 (2022)

    Article  Google Scholar 

  38. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Article  Google Scholar 

  39. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    Article  MATH  Google Scholar 

  40. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Article  MATH  Google Scholar 

  41. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakup Yıldırım.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnous, A.H., Nofal, T.A., Biswas, A. et al. Cubic-quartic optical solitons of the complex Ginzburg-Landau equation: A novel approach. Nonlinear Dyn 111, 20201–20216 (2023). https://doi.org/10.1007/s11071-023-08854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08854-4

Keywords

Navigation