Skip to main content

Advertisement

Log in

Global dynamics of a fractional-order SIS epidemic model with media coverage

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a fractional-order SIS model with generalized transmission function and media coverage is proposed and analyzed. We first obtain the existence, uniqueness, and non-negativeness of solutions. The basic reproduction number \(R_{0}\) is calculated using the next generation matrix method, which serves as a threshold parameter. Precisely, if \(R_0<1\) then the disease-free equilibrium is globally asymptotically stable; if \(R_0>1\) then the endemic equilibrium is globally asymptotically stable. The results are obtained by employing the extension of the Lyapunov Direct Method for Caputo type fractional-order nonlinear systems. Numerical simulations are performed to demonstrate the main theoretic results and reveal the effect of media coverage on disease transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

Not applicable.

Notes

  1. A non-negative function f is \(\alpha \)-Barbalat if \(I^{\alpha }f\) bounded implies that f converges to zero, where

    $$\begin{aligned}{} & {} I^{\alpha }f(t)=\frac{1}{\Gamma (\alpha )}\int _0^t (t-s)^{\alpha -1}f(s)ds. \end{aligned}$$

References

  1. Gao, D., Ruan, S.: An SIS patch model with variable transmission coefficients. Math. Biosci. 232(2), 110–115 (2011). https://doi.org/10.1016/j.mbs.2011.05.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, X., Lv, Z., Ding, Y.: Mathematical modeling and stability analysis of the time-delayed SAIM model for COVID-19 vaccination and media coverage. Math. Biosci. Eng. 19(6), 6296–6316 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tan, Y., Cai, Y., Wang, X., Peng, Z., Wang, K., Yao, R., Wang, W.: Stochastic dynamics of an SIS epidemiological model with media coverage. Math. Comput. Simul. 204, 1–27 (2023). https://doi.org/10.1016/j.matcom.2022.08.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Cui, J., Sun, Y., Zhu, H.: The impact of media on the control of infectious diseases. J. Dyn. Differ. Equ. 20(1), 31–53 (2008). https://doi.org/10.1007/s10884-007-9075-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, J.A., Tao, X., Zhu, H.: An SIS infection model incorporating media coverage. Rocky Mountain J. Math. 38(5), 1323–1334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xiao, Y., Zhao, T., Tang, S., et al.: Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Math. Biosci. Eng. 10(2), 445–461 (2013). https://doi.org/10.3934/mbe.2013.10.445

    Article  MathSciNet  MATH  Google Scholar 

  7. Das, D.K., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math. Comput. 366(124), 732 (2020). https://doi.org/10.1016/j.amc.2019.124732

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, R., Wu, J., Zhu, H.: Media/psychological impact on multiple outbreaks of emerging infectious diseases. Comput. Math. Methods Med. 8(3), 153–164 (2007). https://doi.org/10.1080/17486700701425870

    Article  MathSciNet  MATH  Google Scholar 

  9. Collinson, S., Heffernan, J.M.: Modelling the effects of media during an influenza epidemic. BMC Public Health 14(1), 1–10 (2014)

    Article  Google Scholar 

  10. Li, T., Xiao, Y.: Complex dynamics of an epidemic model with saturated media coverage and recovery. Nonlinear Dynam. 107, 2995–3023 (2022). https://doi.org/10.1007/s11071-021-07096-6

    Article  Google Scholar 

  11. Wang, N., Qi, L., Bessane, M., Hao, M.: Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection. J. Differ. Equ. 369, 1–40 (2023). https://doi.org/10.1016/j.jde.2023.05.036

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, A., Xiao, Y.: A Filippov system describing media effects on the spread of infectious diseases. Nonlinear Anal. Hybrid Syst 11, 84–97 (2014). https://doi.org/10.1016/j.nahs.2013.06.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, L., Zhou, D., Liu, Z., Xu, D., Zhang, X.: Media alert in an SIS epidemic model with logistic growth. J. Biol. Dyn. 11(sup1), 120–137 (2017). https://doi.org/10.1080/17513758.2016.1181212

    Article  MathSciNet  MATH  Google Scholar 

  14. Shi, X., Gao, X., Zhou, X., Li, Y.: Analysis of an SQEIAR epidemic model with media coverage and asymptomatic infection. AIMS Math. 6(11), 12298–12320 (2021). https://doi.org/10.3934/math.2021712

    Article  MathSciNet  MATH  Google Scholar 

  15. Rai, R.K., Khajanchi, S., Tiwari, P.K., Venturino, E., Misra, A.K.: Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India. J. Appl. Math. Comput. 68, 1–26 (2022). https://doi.org/10.1007/s12190-021-01507-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, X., Wang, X., Zhang, F.: Dynamic analysis of a drug transmission model with anti-drug education and media coverage. J. Appl. Anal. Comput. 13(4), 2184–2202 (2023). https://doi.org/10.11948/20220430

    Article  MathSciNet  Google Scholar 

  17. Wang, X., Liang, Y., Li, J., Liu, M.: Modeling COVID-19 transmission dynamics incorporating media coverage and vaccination. Math. Biosci. Eng. 20(6), 10392–10403 (2023)

    Article  MathSciNet  Google Scholar 

  18. Agarwal, P., Ramadan, M.A., Rageh, A.A., Hadhoud, A.R.: A fractional-order mathematical model for analyzing the pandemic trend of COVID-19. Math. Meth. Appl. Sci. 45(8), 4625–4642 (2022). https://doi.org/10.1002/mma.8057

    Article  MathSciNet  Google Scholar 

  19. Massoun, Y.: Analytic study of pine wilt disease model with Caputo–Fabrizio fractional derivative. Math. Meth. Appl. Sci. 45(11), 7072–7080 (2022). https://doi.org/10.1002/mma.8225

    Article  MathSciNet  Google Scholar 

  20. Swati, N.: Fractional order SIR epidemic model with BeddingtonCDe Angelis incidence and Holling type II treatment rate for COVID-19. J. Appl. Math. Comput. 68(6), 3835–3859 (2022). https://doi.org/10.1007/s12190-021-01658-y

    Article  MathSciNet  MATH  Google Scholar 

  21. Addai, E., Zhang, L., Ackora-Prah, J., Gordon, J.F., Asamoah, J.K.K., Essel, J.F.: Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets. Phys. A 603(127), 809 (2022). https://doi.org/10.1016/j.physa.2022.127809

    Article  MathSciNet  MATH  Google Scholar 

  22. Arshad, S., Siddique, I., Nawaz, F., Shaheen, A., Khurshid, H.: Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission. Phys. A 609(128), 383 (2023). https://doi.org/10.1016/j.physa.2022.128383

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, Z., Cai, Y., Wang, Z., Wang, W.: Global stability of a fractional order SIS epidemic model. J. Differ. Equ. 352, 221–248 (2023). https://doi.org/10.1016/j.jde.2022.12.045

    Article  MathSciNet  MATH  Google Scholar 

  24. Naim, M., Lahmidi, F., Namir, A., Kouidere, A.: Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate. Chaos Solitons Fract. 152(111), 456 (2021). https://doi.org/10.1016/j.chaos.2021.111456

    Article  MathSciNet  MATH  Google Scholar 

  25. Huo, J., Zhao, H., Zhu, L.: The effect of vaccines on backward bifurcation in a fractional order HIV model. Nonlinear Anal. Real World Appl. 26, 289–305 (2015). https://doi.org/10.1016/j.nonrwa.2015.05.014

    Article  MathSciNet  MATH  Google Scholar 

  26. Ullah, S., Khan, M.A., Farooq, M.: A fractional model for the dynamics of TB virus. Chaos Solitons Fract. 116, 63–71 (2018). https://doi.org/10.1016/j.chaos.2018.09.001

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, C., Yu, Y., Chen, Y., Lu, Z.: Forecast analysis of the epidemics trend of COVID-19 in the USA by a generalized fractional-order SEIR model. Nonlinear Dyn. 101(3), 1621–1634 (2020). https://doi.org/10.1007/s11071-020-05946-3

    Article  MATH  Google Scholar 

  28. Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus. 135(10), 1–42 (2020). https://doi.org/10.1140/epjp/s13360-020-00819-5

    Article  Google Scholar 

  29. Naik, P.A., Zu, J., Owolabi, K.M.: Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control. Chaos Solitons Fract. 138(109), 826 (2020). https://doi.org/10.1016/j.chaos.2020.109826

    Article  MathSciNet  MATH  Google Scholar 

  30. Diethelm, K.: A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dyn. 71, 613–619 (2013). https://doi.org/10.1007/s11071-012-0475-2

    Article  MathSciNet  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, New York (1999)

    MATH  Google Scholar 

  32. Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor formula. Appl. Math. Comput. 186(1), 286–293 (2007). https://doi.org/10.1016/j.amc.2006.07.102

    Article  MathSciNet  MATH  Google Scholar 

  33. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351(1), 218–223 (2009). https://doi.org/10.1016/j.jmaa.2008.10.018

    Article  MathSciNet  MATH  Google Scholar 

  34. Miller, K.S., Samko, S.G.: A note on the complete monotonicity of the generalized Mittag–Leffler function. Real Anal. Exchange 23(2), 753–755 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004. Springer, Berlin (2010)

    MATH  Google Scholar 

  36. Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67(4), 2433–2439 (2012). https://doi.org/10.1007/s11071-011-0157-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Gallegos, J.A., Duarte-Mermoud, M.A.: On the Lyapunov theory for fractional order systems. Appl. Math. Comput. 287, 161–170 (2016). https://doi.org/10.1016/j.amc.2016.04.039

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, L., Liu, J.G.: A generalized definition of Caputo derivatives and its application to fractional ODEs. SIAM J. Math. Anal. 50(3), 2867–2900 (2018). https://doi.org/10.1137/17M1160318

    Article  MathSciNet  MATH  Google Scholar 

  39. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002). https://doi.org/10.1016/S0025-5564(02)00108-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forsch. Wiss. Rechnen 1999, 57–71 (1998)

    Google Scholar 

  41. Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3(1), 3431 (2013). https://doi.org/10.1038/srep03431

  42. Cong, N.D., Tuan, H.T.: Generation of nonlocal fractional dynamical systems by fractional differential equations. J. Integral Equ. Appl. 29(4), 585–608 (2017). https://doi.org/10.1216/JIE-2017-29-4-585

Download references

Funding

This work was supported partially by the Fund of Education Department of Yunnan Province of China (No. 2022J0986), China Scholarship Council (202206990025), the National Natural Science Foundation of China (No. 12071382), and NSERC of Canada (No. RGPIN-2019-05892).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Chen.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Liu, X. & Chen, Y. Global dynamics of a fractional-order SIS epidemic model with media coverage. Nonlinear Dyn 111, 19513–19526 (2023). https://doi.org/10.1007/s11071-023-08838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08838-4

Keywords

Navigation