Skip to main content
Log in

Dynamics and density function of a stochastic COVID-19 epidemic model with Ornstein–Uhlenbeck process

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Two different approaches to incorporate environmental perturbations in stochastic systems are compared analytically and computationally. Then we present a stochastic model for COVID-19 that considers susceptible, exposed, infected, and recovered individuals, in which the contact rate between susceptible and infected individuals is governed by the Ornstein–Uhlenbeck process. We establish criteria for the existence of a stationary distribution of the system by constructing a suitable Lyapunov function. Next, we derive the analytical expression of the probability density function of the model near the quasi-equilibrium. Additionally, we establish sufficient conditions for the extinction of disease. Finally, we analyze the effect of the Ornstein–Uhlenbeck process on the dynamic behavior of the stochastic model in the numerical simulation section. Overall, our findings shed light on the underlying mechanisms of COVID-19 dynamics and the influence of environmental factors on the spread of the disease, which can inform policy decisions and public health interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing is not applicable to this article as no new data are created or analyzed in this study.

References

  1. World Health Organization, Coronavirus disease (COVID-19). https://www.who.int/health-topics/coronavirus

  2. Annas, S., Pratama, M.I., Rifandi, M., Sanusi, W., Side, S.: Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos Solitons Fract. 39, 110072 (2020). https://doi.org/10.1016/j.chaos.2020.110072

    Article  MathSciNet  Google Scholar 

  3. Liang, K.: Mathematical model of infection kinetics and its analysis for COVID-19, SARS and MERS. Infect. Genet. Evol. 82, 104306 (2020). https://doi.org/10.1016/j.meegid.2020.104306

    Article  Google Scholar 

  4. Almocera, A.E.S., Quiroz, G., Hernandez-Vargas, E.A.: Stability analysis in COVID-19 within-host model with immune response. Commun. Nonlinear Sci. Numer. Simul. 95, 105584 (2021). https://doi.org/10.1016/j.cnsns.2020.105584

    Article  MathSciNet  MATH  Google Scholar 

  5. Enrique Amaro, J., Dudouet, J., Nicolás Orce, J.: Global analysis of the COVID-19 pandemic using simple epidemiological models. Appl. Math. Model. 90, 995–1008 (2021). https://doi.org/10.1016/j.apm.2020.10.019

    Article  MathSciNet  MATH  Google Scholar 

  6. Ndaïrou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fract. 135, 109846 (2020). https://doi.org/10.1016/j.chaos.2020.109846

    Article  MathSciNet  MATH  Google Scholar 

  7. Biswas, S.K., Ghosh, J.K., Sarkar, S., Ghosh, U.: COVID-19 pandemic in India: a mathematical model study. Nonlinear Dyn. 102(1), 537–553 (2020). https://doi.org/10.1007/s11071-020-05958-z

    Article  MATH  Google Scholar 

  8. Khan, M.A., Atangana, A.: Mathematical modeling and analysis of COVID-19: a study of new variant Omicron. Physica A 599, 127452 (2022). https://doi.org/10.1016/j.physa.2022.127452

    Article  MathSciNet  MATH  Google Scholar 

  9. Raza, A., Rafiq, M., Awrejcewicz, J., Ahmed, N., Mohsin, M.: Dynamical analysis of coronavirus disease with crowding effect, and vaccination: a study of third strain. Nonlinear Dyn. 107(4), 3963–3982 (2022). https://doi.org/10.1007/s11071-021-07108-5

    Article  Google Scholar 

  10. Yu, Z., Sohail, A., Arif, R., Nutini, A., Nofal, T.A., Tunc, S.: Modeling the crossover behavior of the bacterial infection with the COVID-19 epidemics. Results Phys. 39, 105774 (2022). https://doi.org/10.1016/j.rinp.2022.105774

    Article  Google Scholar 

  11. Ahmed, N., Elsonbaty, A., Raza, A., Rafiq, M., Adel, W.: Numerical simulation and stability analysis of a novel reaction–diffusion COVID-19 model. Nonlinear Dyn. 106(2), 1293–1310 (2021). https://doi.org/10.1007/s11071-021-06623-9

    Article  Google Scholar 

  12. Tilahun, G.T., Alemneh, H.T.: Mathematical modeling and optimal control analysis of COVID-19 in Ethiopia. J. Interdiscip. Math. 24(8), 2101–2120 (2021). https://doi.org/10.1080/09720502.2021.1874086

    Article  Google Scholar 

  13. Smirnova, A., deCamp, L., Chowell, G.: Forecasting epidemics through nonparametric estimation of time-dependent transmission rates using the SEIR Model. Bull. Math. Biol. 81(11), 4343–4365 (2019). https://doi.org/10.1007/s11538-017-0284-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Raza, A., Arif, M.S., Rafiq, M.: A reliable numerical analysis for stochastic gonorrhea epidemic model with treatment effect. Int. J. Biomath. 12(06), 1950072 (2019). https://doi.org/10.1142/S1793524519500724

    Article  MathSciNet  MATH  Google Scholar 

  15. Raza, A., Awrejcewicz, J., Rafiq, M., Mohsin, M.: Breakdown of a nonlinear stochastic nipah virus epidemic models through efficient numerical methods. Entropy 23(12), 1588 (2021). https://doi.org/10.3390/e23121588

    Article  MathSciNet  Google Scholar 

  16. Hamam, H., Raza, A., Alqarni, M.M., Awrejcewicz, J., Rafiq, M., Ahmed, N., Mahmoud, E.E., Pawłowski, W., Mohsin, M.: Stochastic modelling of Lassa fever epidemic disease. Mathematics 10(16), 2919 (2022). https://doi.org/10.3390/math10162919

    Article  Google Scholar 

  17. Raza, A., Awrejcewicz, J., Rafiq, M., Ahmed, N., Mohsin, M.: Stochastic analysis of nonlinear cancer disease model through virotherapy and computational methods. Mathematics 10(3), 368 (2022). https://doi.org/10.3390/math10030368

    Article  Google Scholar 

  18. Feng, T., Qiu, Z., Meng, X.: Analysis of a stochastic recovery-relapse epidemic model with periodic parameters and media coverage. J. Appl. Anal. Comput. 9(3), 1007–1021 (2019). https://doi.org/10.11948/2156-907X.20180231

    Article  MathSciNet  MATH  Google Scholar 

  19. Din, A., Li, Y.: Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity. Phys. Scr. 96(7), 074005 (2021). https://doi.org/10.1088/1402-4896/abfacc

    Article  Google Scholar 

  20. Shi, Z.: A stochastic SEIRS rabies model with population dispersal: stationary distribution and probability density function. Appl. Math. Comput. 23, 127189 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Nipa, K.F., Allen, L.J.S.: Disease emergence in multi-patch stochastic epidemic models with demographic and seasonal variability. Bull. Math. Biol. 82(12), 152 (2020). https://doi.org/10.1007/s11538-020-00831-x

    Article  MathSciNet  MATH  Google Scholar 

  22. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton Landmarks in Biology, 1st edn. Princeton University Press, Princeton (2001)

    Book  MATH  Google Scholar 

  23. Gao, N., Song, Y., Wang, X., Liu, J.: Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates. Adv. Differ. Equ. 2019(1), 41 (2019). https://doi.org/10.1186/s13662-019-1980-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W., Cai, Y., Ding, Z., Gui, Z.: A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process. Physica A 509, 921–936 (2018). https://doi.org/10.1016/j.physa.2018.06.099

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod-Haldane response function. Appl. Math. Comput. 394, 125833 (2021). https://doi.org/10.1016/j.amc.2020.125833

    Article  MathSciNet  MATH  Google Scholar 

  26. Cai, Y., Jiao, J., Gui, Z., Liu, Y., Wang, W.: Environmental variability in a stochastic epidemic model. Appl. Math. Comput. 329, 210–226 (2018). https://doi.org/10.1016/j.amc.2018.02.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Mamis, K., Farazmand, M.: Stochastic compartmental models of COVID-19 pandemic must have temporally correlated uncertainties. Proc. R. Soc. A: Math. Phys. Eng. Sci. 479(2269), 20220568 (2023). https://doi.org/10.1098/rspa.2022.0568

    Article  MathSciNet  Google Scholar 

  28. Allen, E.: Environmental variability and mean-reverting processes. Discrete Contin. Dyn. Syst. Ser. B 21(7), 2073–2089 (2016). https://doi.org/10.3934/dcdsb.2016037

    Article  MathSciNet  MATH  Google Scholar 

  29. Du, N.H., Nguyen, D.H., Yin, G.G.: Conditions for permanence and ergodicity of certain stochastic predator–prey models. J. Appl. Probab. 53(1), 187–202 (2016). https://doi.org/10.1017/jpr.2015.18

    Article  MathSciNet  MATH  Google Scholar 

  30. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25(3), 518–548 (1993). https://doi.org/10.2307/1427522

    Article  MathSciNet  MATH  Google Scholar 

  31. Dieu, N.T.: Asymptotic properties of a stochastic SIR epidemic model with Beddington–DeAngelis incidence rate. J. Dyn. Differ. Equ. 30(1), 93–106 (2018). https://doi.org/10.1007/s10884-016-9532-8

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhou, B., Jiang, D., Dai, Y., Hayat, T.: Threshold dynamics and probability density function of a stochastic avian influenza epidemic model with nonlinear incidence rate and psychological effect. J. Nonlinear Sci. 33(2), 29 (2023). https://doi.org/10.1007/s00332-022-09885-8

  33. Yang, Q., Zhang, X., Jiang, D.: Dynamical behaviors of a stochastic food chain system with Ornstein–Uhlenbeck process. J. Nonlinear Sci. 32(3), 34 (2022). https://doi.org/10.1007/s00332-022-09796-8

  34. Zhou, B., Han, B., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution, extinction and probability density function of a stochastic vegetation-water model in arid ecosystems. J. Nonlinear Sci. 32(3), 30 (2022). https://doi.org/10.1007/s00332-022-09789-7

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi, Z., Jiang, D.: Environmental variability in a stochastic HIV infection model. Commun. Nonlinear Sci. Numer. Simul. 120, 107201 (2023). https://doi.org/10.1016/j.cnsns.2023.107201

    Article  MathSciNet  MATH  Google Scholar 

  36. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001). https://doi.org/10.1137/S0036144500378302

    Article  MathSciNet  MATH  Google Scholar 

  37. Kifle, Z.S., Obsu, L.L.: Mathematical modeling for COVID-19 transmission dynamics: a case study in Ethiopia. Results Phys. 34, 105191 (2022). https://doi.org/10.1016/j.rinp.2022.105191

    Article  Google Scholar 

Download references

Funding

We are grateful to anonymous reviewers and Dr. Suli Liu for their effort reviewing our paper and positive feedback. This work is supported by the Natural Science Foundation of Shandong Province (No. ZR2019MA010) and Central University Basic Research Fund of China (No. 22CX03030A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix (Local asymptotic stability of endemic equilibrium in the deterministic model (1.1))

Appendix (Local asymptotic stability of endemic equilibrium in the deterministic model (1.1))

For the deterministic model (1.1), we rewrite it by letting \(N(t)=S(t)+E(t)+I(t)+R(t)\) to obtain the following equivalent model:

$$\begin{aligned} \left\{ \begin{aligned} {\frac{\textrm{d}N}{\textrm{d}t}}&=\Pi -\mu N-\rho I,\\ {\frac{\textrm{d}E}{\textrm{d}t}}&{=}\beta (\sigma _1 I{+}\sigma _2 E)(N{-}E{-}I{-}R)-(\delta +\mu )E,\\ {\frac{\textrm{d}I}{\textrm{d}t}}&=\tau \delta E-(\epsilon +\rho +\mu )I,\\ {\frac{\textrm{d}R}{\textrm{d}t}}&=(1-\tau )\delta E+\epsilon I-(\mu +\eta )R. \end{aligned} \right. \nonumber \\ \end{aligned}$$
(A.1)

It is not difficult to obtain that there exists a unique endemic equilibrium for model (A.1) as follows:

$$\begin{aligned} \Theta ^*= & {} (N^*,E^*,I^*,R^*)\\= & {} \left( \frac{\Pi }{\mu } -\frac{\rho I^*}{\mu },\frac{\epsilon +\rho +\mu }{\tau \delta }I^*,I^*, \frac{ (1-\tau )( \rho +\mu ) +\epsilon }{(\mu +\eta )\tau }I^*\right) ,\\{} & {} \quad \quad I^*=\frac{\frac{\Pi }{\mu }\left( 1-\frac{1}{R_0}\right) }{1+\frac{\rho }{\mu }+\frac{\epsilon +\rho +\mu }{\tau \delta } +\frac{(1-\tau )(\rho +\mu )+\epsilon }{\tau (\mu +\eta )}}>0, \end{aligned}$$

such that the following equations hold

$$\begin{aligned} \left\{ \begin{aligned}&\Pi -\rho I^*=\mu N^*,\\&\beta (\sigma _1 I^*+\sigma _2 E^*)S^*=(\delta +\mu )E^*,\\&\tau \delta E^*=(\epsilon +\rho +\mu )I^*,\\&(1-\tau )\delta E^*+\epsilon I^*=(\mu +\eta )R^*. \end{aligned} \right. \end{aligned}$$
(A.2)

where \(S^*=N^*-E^*-I^*-R^*\).

Lemma A.1

If \(R_0 > 1\), then the endemic equilibrium \( (N^*,E^*,I^*,R^*)\) of the system (A.1) is locally asymptotically stable..

Proof

Consider

$$\begin{aligned} (E-E^*)'= & {} \beta (\sigma _1 I^*+\sigma _2 E^*)\\{} & {} \quad [(N-N^*)-(E-E^*)-(I-I^*)\\{} & {} \quad -(R-R^*)]-\frac{\beta \sigma _1 S^* I^*}{E^*}\\{} & {} \quad (E-E^*)+\beta \sigma _1 S^* (I-I^*). \end{aligned}$$

In view of (A.2), we obtain

$$\begin{aligned} L\left( \frac{(E-E^*)^2}{2} \right)= & {} \beta (\sigma _1 I^*+\sigma _2 E^*)(E-E^*)\nonumber \\{} & {} [(N-N^*)-(E-E^*)\nonumber \\{} & {} -(I-I^*)-(R-R^*)]\nonumber \\{} & {} -\frac{\beta \sigma _1 S^* I^*}{E^*}((E-E^*)^2)\nonumber \\{} & {} +\beta \sigma _1 S^* (E-E^*)(I-I^*)\nonumber \\{} & {} =\beta (\sigma _1 I^*+\sigma _2 E^*)(E-E^*)\nonumber \\{} & {} [(N-N^*)-(E-E^*)\nonumber \\{} & {} -(I-I^*)-(R-R^*)]\nonumber \\{} & {} + \beta \sigma _1 S^*E^* I^* \left[ \left( \frac{E}{E^*}{-}1\right) \right. \nonumber \\{} & {} \left. \left( \frac{I}{I^*}{-}1\right) -\left( \frac{E}{E^*}-1\right) ^2\right] .\nonumber \\ \end{aligned}$$
(A.3)

Note that

$$\begin{aligned} \left( N-\frac{\rho }{\epsilon +\rho +\mu }I\right) '=\Pi -\mu N-\frac{\tau \delta \rho }{\epsilon +\rho +\mu }E. \end{aligned}$$

Thus we have

$$\begin{aligned}{} & {} L\left( \frac{1}{2}\left( (N-N^*)-\frac{\rho }{\epsilon +\rho +\mu }(I-I^*)\right) ^2 \right) \\{} & {} \quad =\left( -\mu (N-N^*)-\frac{\tau \delta \rho }{\epsilon +\rho +\mu }(E-E^*)\right) \\{} & {} \qquad \left( (N-N^*)-\frac{\rho }{\epsilon +\rho +\mu }(I-I^*)\right) \\{} & {} \quad =-\mu (N-N^*)^2-\frac{\tau \delta \rho }{\epsilon +\rho +\mu }(N-N^*)\\{} & {} \qquad (E-E^*)+ \frac{\rho \mu }{\epsilon +\rho +\mu }(N-N^*)(I-I^*) \\{} & {} \qquad +\frac{\tau \delta \rho ^2}{(\epsilon +\rho +\mu )^2} (E-E^*)(I-I^*). \end{aligned}$$

Since

$$\begin{aligned}{} & {} L\left( \frac{(N-N^*)^2}{2} \right) \\{} & {} \quad =-\mu (N-N^*)^2-\rho (N-N^*)(I-I^*). \end{aligned}$$

Denote

$$\begin{aligned} V_1= & {} \frac{1}{2}\left( (N-N^*)-\frac{\rho }{\epsilon +\rho +\mu }(I-I^*)\right) ^2\\{} & {} \quad +\frac{\mu }{2(\epsilon +\rho +\mu )} (N-N^*)^2. \end{aligned}$$

Then we have

$$\begin{aligned} LV_1= & {} -\mu \left( 1+\frac{\mu }{ \epsilon +\rho +\mu }\right) (N-N^*)^2\nonumber \\{} & {} \quad -\frac{\tau \delta \rho }{\epsilon +\rho +\mu }\nonumber \\{} & {} \quad (N-N^*)(E-E^*) +\frac{\tau \delta \rho ^2}{(\epsilon +\rho +\mu )^2} \nonumber \\{} & {} \quad (E-E^*)(I-I^*). \end{aligned}$$
(A.4)

Next define

$$\begin{aligned} V_2=\frac{(E-E^*)^2}{2}+\frac{\beta (\sigma _1 I^*+\sigma _2 E^*)(\epsilon +\rho +\mu )}{\tau \delta \rho }V_1. \end{aligned}$$

Combining (A.3) and (A.4), we have

$$\begin{aligned} L V_2= & {} -\beta (\sigma _1 I^*+\sigma _2 E^*)(E-E^*)^2 \nonumber \\{} & {} \quad - \beta (\sigma _1 I^*+\sigma _2 E^*) (E-E^*)\nonumber \\{} & {} \quad \left( \frac{\mu +\epsilon }{\epsilon +\rho +\mu }(I-I^*)+(R-R^*)\right) \nonumber \\{} & {} \quad -\frac{\mu \beta (\sigma _1 I^*+\sigma _2 E^*)(\epsilon +\rho +\mu )}{\tau \delta \rho } \nonumber \\{} & {} \quad \left( 1+\frac{\mu }{ \epsilon +\rho +\mu }\right) (N-N^*)^2\nonumber \\{} & {} \quad + \beta \sigma _1 S^*E^* I^* \left[ \left( \frac{E}{E^*}-1\right) \left( \frac{I}{I^*}-1\right) \right. \nonumber \\{} & {} \left. -\left( \frac{E}{E^*}-1\right) ^2\right] . \end{aligned}$$
(A.5)

Note that

$$\begin{aligned}{} & {} \left( \frac{\mu +\epsilon }{\epsilon +\rho +\mu } I+R\right) '=\left( \frac{\tau (\mu +\epsilon )}{\epsilon +\rho +\mu }+1-\tau \right) \\{} & {} \quad \delta E-\mu I-(\mu +\eta )R. \end{aligned}$$

Then we have

$$\begin{aligned}{} & {} L\left( \frac{1}{2}\left( \frac{\mu +\epsilon }{\epsilon +\rho +\mu } (I-I^*)+(R-R^*)\right) ^2 \right) \nonumber \\{} & {} =\left( \delta \left( \frac{\tau (\mu +\epsilon )}{\epsilon +\rho +\mu }+1-\tau \right) (E-E^*)\right. \nonumber \\{} & {} \quad \left. -\mu (I-I^*)-(\mu +\eta )(R-R^*)\right) \nonumber \\{} & {} \quad \left( \frac{\mu +\epsilon }{\epsilon +\rho +\mu } (I-I^*)+(R-R^*)\right) \nonumber \\{} & {} =\delta \left( \frac{\tau (\mu +\epsilon )}{\epsilon +\rho +\mu }+1-\tau \right) (E-E^*)\nonumber \\{} & {} \quad \left( \frac{\mu +\epsilon }{\epsilon +\rho +\mu } (I-I^*)+(R-R^*)\right) -\frac{\mu (\mu +\epsilon )}{\epsilon +\rho +\mu } \nonumber \\{} & {} \quad (I-I^*)^2-(\mu +\eta )(R-R^*)^2\nonumber \\{} & {} \quad -\left( \mu +\frac{(\mu +\epsilon )(\mu +\eta )}{\epsilon +\rho +\mu }\right) (I-I^*)(R-R^*).\nonumber \\ \end{aligned}$$
(A.6)

In addition, we get

$$\begin{aligned}{} & {} L\left( \frac{(I-I^*)^2}{2} \right) \nonumber \\{} & {} = (I-I^*)[\tau \delta (E-E^*)-(\epsilon +\rho +\mu )(I-I^*)]\nonumber \\{} & {} =\tau \delta E^* I^* \left[ \left( \frac{E}{E^*}-1\right) \left( \frac{I}{I^*}-1\right) -\left( \frac{I}{I^*}-1\right) ^2\right] .\nonumber \\ \end{aligned}$$
(A.7)

Define

$$\begin{aligned} V_3= & {} \frac{c_1}{2}\left( \frac{\mu +\epsilon }{\epsilon +\rho +\mu } (I-I^*)\right. \\{} & {} \quad \left. +(R-R^*)\right) ^2 +\frac{\beta \sigma _1 S^*}{2\tau \delta }(I-I^*)^2. \end{aligned}$$

with

$$\begin{aligned} c_1=\frac{\beta (\sigma _1 I^*+\sigma _2 E^*)}{ \delta \left( \frac{\tau (\mu +\epsilon )}{\epsilon +\rho +\mu }+1-\tau \right) }. \end{aligned}$$

Combining (A.5), (A.6) and (A.7), we have

$$\begin{aligned} L V_3= & {} -\beta (\sigma _1 I^*+\sigma _2 E^*)(E-E^*)^2\nonumber \\{} & {} \quad -\frac{\mu \beta (\sigma _1 I^*+\sigma _2 E^*)(\epsilon +\rho +\mu )}{\tau \delta \rho } \nonumber \\{} & {} \quad \left( 1+\frac{\mu }{ \epsilon +\rho +\mu }\right) (N-N^*)^2\nonumber \\{} & {} \quad {-}\frac{c_1\mu (\mu {+}\epsilon )}{\epsilon {+}\rho {+}\mu } (I{-}I^*)^2{-}c_1(\mu {+}\eta )(R-R^*)^2\nonumber \\{} & {} \quad {-}c_1\left( \mu {+}\frac{(\mu {+}\epsilon )(\mu {+}\eta )}{\epsilon {+}\rho {+}\mu }\right) (I{-}I^*)(R-R^*)\nonumber \\{} & {} \quad + \beta \sigma _1 S^*E^* I^* \left[ 2\left( \frac{E}{E^*}-1\right) \left( \frac{I}{I^*}-1\right) \right. \nonumber \\{} & {} \quad \left. -\left( \frac{E}{E^*}-1\right) ^2 -\left( \frac{I}{I^*}-1\right) ^2\right] \nonumber \\{} & {} \le -\beta (\sigma _1 I^*+\sigma _2 E^*)(E-E^*)^2\nonumber \\{} & {} \quad -\frac{\mu \beta (\sigma _1 I^*+\sigma _2 E^*)(\epsilon +\rho +\mu )}{\tau \delta \rho } \nonumber \\{} & {} \quad \left( 1+\frac{\mu }{ \epsilon +\rho +\mu }\right) (N-N^*)^2\nonumber \\{} & {} \quad {-}\frac{c_1\mu (\mu {+}\epsilon )}{\epsilon {+}\rho {+}\mu } (I{-}I^*)^2{-}c_1(\mu +\eta )(R-R^*)^2\nonumber \\{} & {} \quad {-}c_1\left( \mu {+}\frac{(\mu {+}\epsilon )(\mu {+}\eta )}{\epsilon {+}\rho {+}\mu }\right) (I-I^*)(R-R^*).\nonumber \\ \end{aligned}$$
(A.8)

Then from

$$\begin{aligned} \left( I-\frac{\tau }{1-\tau }R\right) '=\frac{\tau (\mu +\eta )}{1-\tau } R-\left( \rho +\mu +\frac{\epsilon }{1-\tau }\right) I. \end{aligned}$$

We have

$$\begin{aligned}{} & {} L\left( \frac{1}{2}\left( (I-I^*)-\frac{\tau }{1-\tau }(R-R^*)\right) ^2\right) \nonumber \\{} & {} =\left( \frac{\tau (\mu +\eta )}{1-\tau }(R-R^*)-\left( \rho +\mu +\frac{\epsilon }{1-\tau }\right) (I-I^*)\right) \nonumber \\{} & {} \quad \left( (I-I^*) -\frac{\tau }{1-\tau }(R-R^*)\right) \nonumber \\{} & {} =-\left( \rho +\mu +\frac{\epsilon }{1-\tau }\right) (I-I^*)^2- \frac{\tau ^2(\mu +\eta )}{(1-\tau )^2}(R-R^*)^2 \nonumber \\{} & {} \quad +\frac{ \tau }{1-\tau }\left( \rho +\eta +2\mu +\frac{\epsilon }{1-\tau }\right) (I-I^*)(R-R^*).\nonumber \\ \end{aligned}$$
(A.9)

Then define

$$\begin{aligned} V=V_2+\frac{c_2}{2}\left( (I-I^*)-\frac{\tau }{1-\tau }(R-R^*)\right) ^2, \end{aligned}$$

with

$$\begin{aligned} c_2=\frac{c_1\left( \mu +\frac{(\mu +\epsilon )(\mu +\eta )}{\epsilon +\rho +\mu }\right) (1-\tau ) }{ \tau \left( \rho +\eta +2\mu +\frac{\epsilon }{1-\tau }\right) }. \end{aligned}$$

Combining (A.8) and (A.9), we have

$$\begin{aligned}{} & {} LV \le -\beta (\sigma _1 I^*+\sigma _2 E^*)(E-E^*)^2 \nonumber \\{} & {} \quad -\frac{\mu \beta (\sigma _1 I^*+\sigma _2 E^*)(\epsilon +\rho +\mu )}{\tau \delta \rho } \nonumber \\{} & {} \quad \left( 1+\frac{\mu }{ \epsilon +\rho +\mu }\right) (N-N^*)^2\nonumber \\{} & {} \quad -\left( \frac{c_1\mu (\mu +\epsilon )}{\epsilon +\rho +\mu }+c_2\left( \rho +\mu +\frac{\epsilon }{1-\tau }\right) \right) (I-I^*)^2\nonumber \\{} & {} \quad -\left( c_1(\mu +\eta )+\frac{c_2\tau ^2(\mu +\eta )}{(1-\tau )^2}\right) (R-R^*)^2.\nonumber \\ \end{aligned}$$
(A.10)

In view of (A.10), one can obtain that there are positive constants \(q_1\), \(q_2\) and \(q_3\) such that

$$\begin{aligned}{} & {} q_1[(E-E^*)^2+(I-I^*)^2+(R-R^*)^2\\{} & {} \quad +(N-N^*)^2]\le V(N,E,I,R)\le q_2[(E-E^*)^2\\{} & {} \quad +(I-I^*)^2+(R-R^*)^2+(N-N^*)^2], \end{aligned}$$

and

$$\begin{aligned} LV\le & {} -q_3[(E-E^*)^2+(I-I^*)^2\\{} & {} \quad +(R-R^*)^2+(N-N^*)^2]. \end{aligned}$$

Hence we have

$$\begin{aligned} \limsup _{t\rightarrow +\infty }\frac{\ln |V((S(t),E(t),I(t),R(t)) )|}{t}\le {-q_3,} \end{aligned}$$

which implies that the endemic equilibrium \((N^*,E^*, \)\( I^*,R^*) \) of system (A.1) is exponentially stable and hence the endemic equilibrium is locally asymptotically stable. This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Jiang, D. Dynamics and density function of a stochastic COVID-19 epidemic model with Ornstein–Uhlenbeck process. Nonlinear Dyn 111, 18559–18584 (2023). https://doi.org/10.1007/s11071-023-08790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08790-3

Keywords

Navigation