Skip to main content
Log in

A constrained robust switching MPC structure for tilt-rotor UAV trajectory tracking problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In tilt-rotor UAVs, both the fuselage and tilting rotors contribute to the vehicle’s rotational motion. Consequently, the system’s dynamics rise to a highly-nonlinear system, making it challenging to find feasible and desired control solutions. The common control practices devise a logic-based controller to switch between different flight modes or map the control inputs to the conventional helicopter-type control inputs. However, they fail to provide energy-efficient fast trajectory tracking, especially in the presence of external disturbances. This paper proposes a general-model dynamic formulation and a two-layered constrained model predictive control (MPC) strategy to tackle the trajectory tracking problem for tilt-rotor UAVs. After splitting the vehicle’s dynamics into translational and rotational parts, a constrained linear MPC (LMPC) is designed for the translational dynamics to follow a reference trajectory. We formulate the LMPC as a quadratically-constrained quadratic problem that leads to a feasible set-point solution for the rotational control layer without violating the physical constraints. Also, an optimizer is designed to generate a thrust vector, which leverages the vehicle’s full potential via a continuous transition between the rotation in the fuselage and that in tilting rotors. In the second layer, the nonlinear rotational dynamics are approximated via piecewise affine subsystems. A constrained robust switching MPC with mode-dependent dwell time (MDT) is then designed to follow the first layer’s generated trajectories (Euler angles and thrust vectors). By providing admissible MDTs, the rotational dynamics feasibility, stability, and robustness are preserved in the presence of disturbances. Also, by employing an augmented dynamic model, this control design would allow for directly incorporating actuator constraints into the problem formulation. We demonstrate the controller’s performance and effectiveness via simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability Statement

The paper’s data are generated using simulation, and we provide all the information needed in the paper to replicate the simulation.

References

  1. Yavari, M., Gupta, K., Mehrandezh, M., Ramirez-Serrano, A.: Optimal Real-Time Trajectory Control of a Pitch-Hover UAV with a Two Link Manipulator. In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 930–938 (2018)

  2. Rego, B.S., Raffo, G.V.: Suspended load path tracking control using a tilt-rotor UAV based on zonotopic state estimation. J. Franklin Inst. 356(4), 1695–1729 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. De almeida, M.M., Raffo, G.V.: Nonlinear control of a TiltRotor UAV for load transportation. IFAC-PapersOnLine 48(19), 232–237 (2015)

    Google Scholar 

  4. Papachristos, C., Alexis, K., Nikolakopoulos, G., Tzes, A.: Model predictive attitude control of an unmanned Tilt-Rotor aircraft. In: 2011 IEEE International Symposium on Industrial Electronics, pp. 922–927 (2011)

  5. Hoffmann, G.M., Huang, H., Wasl, S.L., Tomlin, E.C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: In Proc. of the AIAA Guidance, Navigation, and Control Conference (2007)

  6. Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. Ph.D. thesis, EPFL, Lausanne (2007)

  7. Tzes, A., Nikolakopoulos, G., Alexis, K.: Model predictive quadrotor control: attitude, altitude and position experimental studies. IET Control Theory Appl. 6(12), 1812–1827 (2012)

    Article  MathSciNet  Google Scholar 

  8. Eskandarpour, A., Sharf, I.: A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn. 99 (2020)

  9. Ryll, M., Bülthoff, H.H., Giordano, P.R.: Modeling and control of a quadrotor UAV with tilting propellers. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4606–4613 (2012)

  10. Kong, Z., Lu, Q.: Mathematical modeling and modal switching control of a novel tiltrotor UAV. J. Robot. (2018)

  11. Santos, M.A., Ferramosca, A., Raffo, G.V.: Tube-based MPC with nonlinear control for load transportation using a UAV. IFAC-PapersOnLine 51(25), 459–465 (2018)

    Article  Google Scholar 

  12. Manzoor, T., Xia, Y., Zhai, D.H., Ma, D.: Trajectory tracking control of a VTOL unmanned aerial vehicle using offset-free tracking MPC. Chin. J. Aeronaut. 33(7), 2024–2042 (2020)

    Article  Google Scholar 

  13. Xian, B., Xie, T., Jin, X.: Asymptotic tracking control of an underactuated tilt trirotor unmanned aerial vehicle. Mech. Syst. Signal Process. 159, 107729 (2021)

    Article  Google Scholar 

  14. Prach, A., Kayacan, E.: An MPC-based position controller for a tilt-rotor tricopter VTOL UAV. Optim. Control Appl. Methods 39(1), 343–356 (2018)

    Article  MATH  Google Scholar 

  15. Yoo, D.W., Oh, H.D., Won, D.Y., Tahk, M.J.: Dynamic modeling and control system design for Tri-Rotor UAV. In: 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, pp. 762–767 (2010)

  16. Wang, X., Cai, L.: Mathematical modeling and control of a tilt-rotor aircraft. Aerosp. Sci. Technol. 47, 473–492 (2015)

    Article  Google Scholar 

  17. Papachristos, C., Alexis, K., Tzes, A.: Hybrid model predictive flight mode conversion control of unmanned Quad-TiltRotors. In: 2013 European Control Conference (ECC), pp. 1793–1798 (2013)

  18. Zheng, P., Tan, X., Kocer, B.B., Yang, E., Kovac, M.: TiltDrone: a fully-actuated tilting quadrotor platform. IEEE Robot. Autom. Lett. 5(4), 6845–6852 (2020)

    Article  Google Scholar 

  19. Bauersfeld, L., Spannagl, L., Ducard, G.J.J., Onder, C.H.: MPC flight control for a tilt-rotor VTOL aircraft. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2395–2409 (2021)

    Article  Google Scholar 

  20. Chen, C., Zhang, J., Zhang, D., Shen, L.: Control and flight test of a tilt-rotor unmanned aerial vehicle. Int. J. Adv. Robot. Syst. 14 (2017)

  21. Seo, Y., Kim, Y.: Modeling and attitude control of tri-tilt ducted fan vehicle. In: AIAA Guidance, Navigation, and Control Conference, AIAA SciTech Forum. American Institute of Aeronautics and Astronautics (2016)

  22. Ryll, M., Bicego, D., Franchi, A.: Modeling and control of FAST-Hex: A fully-actuated by synchronized-tilting hexarotor. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1689–1694 (2016)

  23. Alexis, K., Nikolakopoulos, G., Tzes, A.: On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian J. Control 16(1), 209–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Andrade, R., Raffo, G.V., Normey-Rico, J.E.: Model predictive control of a tilt-rotor UAV for load transportation. In: 2016 European Control Conference (ECC), pp. 2165–2170 (2016)

  25. Torrente, G., Kaufmann, E., Fohn, P., Scaramuzza, D.: Data-driven MPC for quadrotors. IEEE Robot. Autom. Lett. 6(2), 3769–3776 (2021)

    Article  Google Scholar 

  26. Flores, G.R., Escareño, J., Lozano, R., Salazar, S.: Quad-tilting rotor convertible MAV: modeling and real-time hover flight control. J. Intell. Rob. Syst. 65(1), 457–471 (2012)

    Article  Google Scholar 

  27. Amiri, N., Ramirez-Serrano, A., Davies, R.: Modelling of opposed lateral and longitudinal tilting dual-fan unmanned aerial vehicle. IFAC Proc. Vol. 44(1), 2054–2059 (2011)

    Article  Google Scholar 

  28. Benkhoud, K., Bouallègue, S.: Dynamics modeling and advanced metaheuristics based LQG controller design for a Quad Tilt Wing UAV. Int. J. Dyn. Control 6(2), 630–651 (2018)

    Article  MathSciNet  Google Scholar 

  29. Chowdhury, A.B., Kulhare, A., Raina, G.: A generalized control method for a Tilt-rotor UAV stabilization. In: 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 309–314 (2012)

  30. Yu, L., He, G., Zhao, S., Wang, X.: Dynamic inversion-based sliding mode control of a tilt tri-rotor UAV. In: 2019 12th Asian Control Conference (ASCC), pp. 1637–1642 (2019)

  31. Anderson, R.B., Burke, J., Marshall, J.A., L’Afflitto, A.: Robust adaptive control for constrained tilt-rotor quadcopters of unknown inertial properties. In: 2019 American Control Conference (ACC), pp. 2922–2927 (2019)

  32. Kim, B.M., Choi, K.C., Kim, B.S.: Trajectory tracking controller design using neural networks for tiltrotor UAV. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2007)

  33. Papachristos, C., Alexis, K., Tzes, A.: Dual-authority thrust-vectoring of a tri-tiltrotor employing model predictive control. J. Intell. Robot. Syst. 81(3), 471–504 (2016)

    Article  Google Scholar 

  34. Papachristos, C., Alexis, K., Tzes, A.: Model predictive hovering-translation control of an unmanned Tri-TiltRotor. In: 2013 IEEE International Conference on Robotics and Automation, pp. 5425–5432 (2013)

  35. Santos, M.A., Raffo, G.V.: Path tracking Model Predictive Control of a Tilt-rotor UAV carrying a suspended load. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1458–1463 (2016)

  36. Zhang, L., Zhuang, S., Braatz, R.D.: Switched model predictive control of switched linear systems: feasibility, stability and robustness. Automatica 67, 8–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Beard, R.: Quadrotor Dynamics and Control Rev 0.1. Faculty Publications (2008)

    Google Scholar 

  38. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  39. Luukkonen, T.: Modelling and control of quadcopter. Independent research project in applied mathematics, Espoo 22, 22 (2011)

    Google Scholar 

  40. Wang, L.: Discrete-time MPC with Constraints. In: Model Predictive Control System Design and Implementation Using MATLAB®, Advances in Industrial Control, pp. 43–84. Springer, London (2009)

    Google Scholar 

  41. Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J., Rodriguez, F.: Online robust tube-based MPC for time-varying systems: a practical approach. Int. J. Control 84(6), 1157–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Goulart, P., Kerrigan, E., Maciejowski, J.: Optimization over state feedback policies for robust control with constraints. Automatica 42, 523–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Limon, D., Alvarado, I., Alamo, T., Camacho, E.F.: Robust tube-based MPC for tracking of constrained linear systems with additive disturbances. J. Process Control 20(3), 248–260 (2010)

    Article  Google Scholar 

  44. Mayne, D.Q., Seron, M.M., Raković, S.V.: Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2), 219–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Scattolini, R., Colaneri, P.: Hierarchical model predictive control. In: 2007 46th IEEE Conference on Decision and Control, pp. 4803–4808 (2007)

  46. Picasso, B., De Vito, D., Scattolini, R., Colaneri, P.: An MPC approach to the design of two-layer hierarchical control systems. Automatica 46(5), 823–831 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vermillion, C., Menezes, A., Kolmanovsky, I.: Stable hierarchical model predictive control using an inner loop reference model and \(\lambda \)-contractive terminal constraint sets. Automatica 50(1), 92–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bemporad, A., Pascucci, C.A., Rocchi, C.: Hierarchical and hybrid model predictive control of quadcopter air vehicles. IFAC Proc. Vol. 42(17), 14–19 (2009)

    Article  Google Scholar 

  49. Zhao, X., Zhang, L., Shi, P., Liu, M.: Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Autom. Control 57(7), 1809–1815 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Cao, M., Morse, A.S.: Dwell-time switching. Syst. Control Lett. 59(1), 57–65 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vicente, B.A.H., Trodden, P.A.: Switching tube-based MPC: characterization of minimum dwell-time for feasible and robustly stable switching. IEEE Trans. Autom. Control 64(10), 4345–4352 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rawlings, J.B., Q, M.D.: Model Predictive Control Theory and Design. Nob Hill Pub, Llc, Madison, Wis (2009)

  53. Borrelli, F., Bemporad, A., Morari, M.: Predictive Control for Linear and Hybrid Systems. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  54. Kerrigan, E.C.: Robust constraint satisfaction: invariant sets and predictive control. PhD Thesis. University of Cambridge (2000)

  55. Kvasnica, M., Grieder, P., Baotić, M.: Multi-Parametric Toolbox (MPT). http://control.ee.ethz.ch/~mpt/ (2004)

  56. Anevlavis, T., Liu, Z., Ozay, N., Tabuada, P.: Controlled invariant sets: implicit closed-form representations and applications. arXiv:2107.08566. https://doi.org/10.48550/arXiv.2107.08566 (2021)

  57. Ryll, M., Bülthoff, H.H., Giordano, P.R.: First flight tests for a quadrotor UAV with tilting propellers. In: 2013 IEEE International Conference on Robotics and Automation, pp. 295–302 (2013)

Download references

Funding

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research and Development Grant to Drs Gupta and Mehrandezh, 536142-8 and NSERC Discovery Grant to Dr Gupta, RGPIN-2017-05818.

Author information

Authors and Affiliations

Authors

Contributions

The order of authors reflects the contribution to the research. The first draft of the manuscript was written by Mr. Eskandapour and Drs Gupta and Mehrandezh provided detailed critique, comments and modifications over several iterations that resulted in the final version.

Corresponding author

Correspondence to Abolfazl Eskandarpour.

Ethics declarations

Conflict of interest

Mr Eskanadapour, Mr Soltanshah, Drs Gupta and Mehrandezh have no finicncial interests. Dr. Ramirez-Serrano is the Founder and CEO of 4Front Robotics Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandarpour, A., Mehrandezh, M., Gupta, K. et al. A constrained robust switching MPC structure for tilt-rotor UAV trajectory tracking problem. Nonlinear Dyn 111, 17247–17275 (2023). https://doi.org/10.1007/s11071-023-08787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08787-y

Keywords

Navigation