Skip to main content
Log in

Dynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic–quintic nonlinear terms in optical fibers

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is the dynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic–quintic nonlinear terms, which describes the propagation of ultrashort pulses in optical fibers. Firstly, based on Lax pair, the Nth-fold Darboux transformation is constructed. Secondly, the N-soliton solutions are obtained and the interactions of solitons are analyzed graphically. Moreover, the Akhmediev breather, space-time period breather and line breather are derived. The interactions of two breathers are shown and discussed. In addition, the first-order usual rogue wave and line rogue wave are given and investigated. And the different structures of second- and third-order rogue wave are observed. Finally, the interaction solutions between rogue wave and one-breather are constructed. These results in the present work could be used to understand related physical phenomena in nonlinear optics and relevant fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are including in this published article.

References

  1. Shukla, P.K., Mamun, A.A.: Solitons, shocks and vortices in dusty plasmas. New J. Phys. 5, 17 (2003)

    Google Scholar 

  2. Zhang, G.Q., Yan, Z.Y., Wen, X.Y.: Three-wave resonant interactions: Multi-dark-dark-dark solitons, breathers, RWs, and their interactions and dynamics. Phys. D 366, 27–42 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Kodama, Y.: KP solitons in shallow water. J. Phys. A: Math. Theor. 43, 434004 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Manafian, J., Foroutan, M., Guzali, A.: Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan–Porsezian–Daniel model. Eur. Phys. J. Plus 132, 494 (2017)

    Google Scholar 

  5. Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 065001 (2020)

    MATH  Google Scholar 

  6. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198 (1999)

    Google Scholar 

  7. Yang, S.X., Wang, Y.F., Zhang, X.: Conservation laws, Darboux transformation and localized waves for the \(N\)-coupled nonautonomous Gross-Pitaevskii equations in the Bose-Einstein condensates. Chaos Soliton. Fract. 169, 113272 (2023)

    MathSciNet  Google Scholar 

  8. Scott, A.: Davydov’s soliton. Phys. Rep. 217, 1–67 (1992)

    MATH  Google Scholar 

  9. Kengne, E., Liu, W.M.: Engineering RWs with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network. Phys. Rev. E 102, 012203 (2020)

    Google Scholar 

  10. Wang, X., Li, Y.Q., Chen, Y.: Generalized Darboux transformation and localized waves in coupled Hirota equations. Wave Motion 51, 1149–1160 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform-fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Google Scholar 

  13. Agrawal, G.P.: Nonlinear fiber optics. Springer, Berlin, Heidelberg (2000)

    MATH  Google Scholar 

  14. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 57, 1456–1472 (2010)

    MATH  Google Scholar 

  15. Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Du, X.X.: Breathers, multi-peak solitons, breather-to-soliton transitions and modulation instability of the variable-coefficient fourth-order nonlinear Schrödinger system for an inhomogeneous optical fiber. Chin. J. Phys. 62, 274–283 (2019)

    Google Scholar 

  16. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30, 1262 (1973)

    MathSciNet  Google Scholar 

  18. Ma, Y.C.: The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    MathSciNet  MATH  Google Scholar 

  19. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    MathSciNet  Google Scholar 

  20. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    MATH  Google Scholar 

  21. Shats, M., Punzmann, H., Xia, H.: Capillary RWs. Phys. Rev. Lett. 104, 104503 (2010)

    Google Scholar 

  22. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  23. Kharif, C., Pelinovsky, E.: Physical mechanisms of the RW phenomenon. Eur. J. Mech. B-Fluid. 22, 603–634 (2003)

    MATH  Google Scholar 

  24. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical RWs. Nature 450, 1054–1057 (2007)

    Google Scholar 

  25. Zhang, G.Q., Yan, Z.Y., Wen, X.Y., Chen, Y.: Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations. Phys. Rev. E 95, 042201 (2017)

    MathSciNet  Google Scholar 

  26. Rao, J.G., He, J.S., Mihalache, D., Cheng, Y.: Dynamics and interaction scenarios of localized wave structures in the Kadomtsev–Petviashvili-based system. Phys. Rev. E 94, 166–173 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Ma, Y.L.: Interaction and energy transition between the breather and RW for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    MATH  Google Scholar 

  28. Ji, T., Zhai, Y.Y.: Soliton, breather and RW solutions of the coupled Gerdjikov–Ivanov equation via Darboux transformation. Nonlinear Dyn. 101, 619–631 (2020)

    MATH  Google Scholar 

  29. Ankiewicz, A., Akhmediev, N.: Rogue wave-type solutions of the mKdV equation and their relation to known NLSE RW solutions. Nonlinear Dyn. 91, 1931–1938 (2018)

    Google Scholar 

  30. Ankiewicz, A.: Rogue and semi-RWs defined by volume. Nonlinear Dyn. 104, 4241–4252 (2021)

    Google Scholar 

  31. Zhang, H.Q., Chen, F., Pei, Z.J.: Rogue waves of the fifth-order Ito equation on the general periodic travelling wave solutions background. Nonlinear Dyn. 103, 1023–1033 (2021)

    MATH  Google Scholar 

  32. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142 (1973)

    Google Scholar 

  33. Hasegawa, A.: Optical solitons in fibers. Springer Tracts in Modern Physics, Berlin (1992)

    Google Scholar 

  34. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Google Scholar 

  35. Fujioka, J., Espinosa, A.: Diversity of solitons in a generalized nonlinear Schrödinger equation with self-steepening and higher-order dispersive and nonlinear terms. Chaos 25, 113114 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393 (1983)

    Google Scholar 

  37. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    MathSciNet  Google Scholar 

  38. Xiao, Y.: The modified nonlinear Schrödinger equation: Darboux transformation and projection matrices. Commun. Theor. Phys. 15, 365 (1991)

    Google Scholar 

  39. Chen, Z.Y., Huang, N.N.: Explicit \(N\)-soliton solution of the modified nonlinear Schrödinger equation. Phys. Rev. A 41, 4066 (1990)

    Google Scholar 

  40. Liu, S.L., Wang, W.Z.: Exact \(N\)-soliton solution of the modified nonlinear Schrödinger equation. Phys. Rev. E 48, 3054 (1993)

    MathSciNet  Google Scholar 

  41. Wen, X.Y., Yang, Y.Q., Yan, Z.Y.: Generalized perturbation \((n, M)\)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Phys. Rev. E 92, 012917 (2015)

    MathSciNet  Google Scholar 

  42. Wang, H.T., Wen, X.Y., Wang, D.S.: Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation. Wave Motion 91, 102396 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Arshad, M., Seadawy, A.R., Lu, D.: Elliptic function and solitary wave solutions of the higher-order nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity and its stability. Eur. Phys. J. Plus 132, 371 (2017)

    Google Scholar 

  44. Choudhuri, A., Porsezian, K.: Higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: a model for sub-10-fs-pulse propagation. Phys. Rev. A 88, 033808 (2013)

    Google Scholar 

  45. Choudhuri, A., Porsezian, K.: Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation. Phys. Rev. A 85, 033820 (2012)

    Google Scholar 

  46. Choudhuri, A., Porsezian, K.: Dark-in-the-Bright solitary wave solution of higher-order nonlinear Schrödinger equation with non-Kerr terms. Opt. Commun. 285, 364–367 (2012)

    Google Scholar 

  47. Triki, H., Azzouzi, F., Grelu, P.: Multipole solitary wave solutions of the higher-order nonlinear Schrödinger equation with quintic non-Kerr terms. Opt. Commun. 309, 71–79 (2013)

    Google Scholar 

  48. Triki, H., Biswas, A., Milović, D., Belić, M.: Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities. Opt. Commun. 366, 362–369 (2016)

    Google Scholar 

  49. Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)

    MathSciNet  MATH  Google Scholar 

  50. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux transformation in soliton theory, and its geometric applications. Shanghai Science and Technology Publishers, Shanghai (2005)

    Google Scholar 

  51. Hirota, R.: The direct method in soliton theory. Cambridge Univ. Press, Cambridge (2004)

  52. Darboux, G.: On a proposition relative to linear equations. Compt. Rend. 94, 1456-1459 (1882) arXiv preprint arXiv:physics/9908003

  53. Daniel, M., Beula, J.: Soliton spin excitations and their perturbation in a generalized inhomogeneous Heisenberg ferromagnet. Phys. Rev. B 77, 144416 (2008)

    Google Scholar 

  54. Bishop, A.R., Krumhansl, J.A., Trullinger, S.E.: Solitons in condensed matter: a paradigm. Phys. Rev. B 1, 1–44 (1980)

    MathSciNet  Google Scholar 

  55. Gui, L.L., Li, X., Xiao, X.S., Zhu, H.W., Yang, C.X.: Widely spaced bound states in a soliton fiber laser with graphene saturable absorber. IEEE Photonic. Tech. Lett. 25, 1184–1187 (2013)

    Google Scholar 

  56. Yu, M., Jang, J.K., Okawachi, Y., Griffith, A.G., Luke, K., Miller, S.A., Ji, X.C., Lipson, M., Gaeta, A.L.: Breather soliton dynamics in microresonators. Nat. Commun. 8, 14569 (2017)

    Google Scholar 

  57. Leo, F., Gelens, L., Emplit, P., Haelterman, M., Coen, S.: Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21, 9180 (2013)

    Google Scholar 

  58. Peng, J.S., Boscolo, S., Zhao, Z.H., Zeng, H.P.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, eaax1110 (2019)

    Google Scholar 

  59. Xian, T.H., Xian, L., Wang, W.C., Zhang, W.Y.: Subharmonic entrainment breather solitons in ultrafast lasers. Phys. Rev. Lett. 125, 163901 (2020)

    Google Scholar 

  60. Erkintalo, M., Genty, G., Dudley, J.M.: Rogue-wave-like characteristics in femtosecond supercontinuum generation. Opt. Lett. 34, 2468 (2009)

    Google Scholar 

  61. Bludov, Y.V., Konotop, V.V.: Vector RWs in binary mixtures of Bose-Einstein condensates. Eur. Phys. J. Special Topics 185, 169–180 (2010)

    Google Scholar 

  62. Yan, Z.Y., Konotop, V.V., Akhmediev, N.: Three-dimensional RWs in nonstationary parabolic potentials. Phys. Rev. E 82, 036610 (2010)

    MathSciNet  Google Scholar 

  63. Onorato, M., Osborne, A.R., Serio, M.: Freak waves in random oceanic sea states. Phys. Rev. Lett. 86, 5831–5834 (2001)

    Google Scholar 

  64. Kjeldsen, S.P.: Dangerous wave groups. Norwegian Maritime Res. 2, 4–16 (1984)

    Google Scholar 

  65. Tutsoy, O., Çolak, Ş, Polat, A., Balikci, K.: A novel parametric model for the prediction and analysis of the COVID-19 casualties. IEEE Access 8, 193898–193906 (2020)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers 11801597].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SX., Wang, YF. & Zhang, X. Dynamics of localized waves for the higher-order nonlinear Schrödinger equation with self-steepening and cubic–quintic nonlinear terms in optical fibers. Nonlinear Dyn 111, 17439–17454 (2023). https://doi.org/10.1007/s11071-023-08755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08755-6

Keywords

Navigation