Skip to main content
Log in

Nonlinear dynamics of FG-GNPRC multiphase composite membranes with internal pores and dielectric properties

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamics of the functionally graded graphene nanoplatelet reinforced composite (FG-GNPRC) dielectric and porous membrane subjected to electro-mechanical loading is investigated. The effective material properties of multiphase composites are determined via a two-step hybrid micromechanical model. Based on the hyperelastic membrane theory, Neo-Hookean constitutive model and the couple dielectric theory, the governing equations are obtained using an energy method considering damping and dielectric properties. Taylor series expansion (TSE) and differential quadrature (DQ) methods are utilized to discretize equations, which are then solved numerically by the incremental harmonic balance (IHB) method combined with arc-length continuation technique. The convergence analysis is carried out and the accuracy of the solution method is verified by comparing with the results of previous studies. The influence of the attributes of the internal pore, GNP, the geometric characteristics of membrane, stretching ratio and the applied electric filed on forced vibration and resonance response of the system are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Zhang, J., Chen, H., Li, D.: Pinnacle elimination and stability analyses in nonlinear oscillation of soft dielectric elastomer slide actuators. Nonlinear Dyn. 94, 1907–1920 (2018)

    Google Scholar 

  2. Luo, K., Tian, Q., Hu, H.: Dynamic modeling, simulation and design of smart membrane systems driven by soft actuators of multilayer dielectric elastomers. Nonlinear Dyn. 102, 1463–1483 (2020)

    Google Scholar 

  3. York, A., Dunn, J., Seelecke, S.: Systematic approach to development of pressure sensors using dielectric electro-active polymer membranes. Smart Mater. Struct. 22, 094015 (2013)

    Google Scholar 

  4. Khalid, M.A.U., Ali, M., Soomro, A.M., Kim, S.W., Kim, H.B., Lee, B.G., Choi, K.H.: A highly sensitive biodegradable pressure sensor based on nanofibrous dielectric. Sens. Actuat. A: Phys. 294, 140–147 (2019)

    Google Scholar 

  5. Lai, Z., Thomson, G., Yurchenko, D., Val, D.V., Rodgers, E.: On energy harvesting from a vibro-impact oscillator with dielectric membranes. Mech. Syst. Signal. 107, 105–121 (2018)

    Google Scholar 

  6. Lai, Z., Wang, S., Zhu, L., Zhang, G., Wang, J., Yang, K., Yurchenko, D.: A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mech. Syst. Signal. 150, 107212 (2021)

    Google Scholar 

  7. Cao, C., Gao, X., Conn, A.T.: A magnetically coupled dielectric elastomer pump for soft robotics. Adv. Mater. Technol. 4, 1900128 (2019)

    Google Scholar 

  8. Youn, J.H., Jeong, S.M., Hwang, G., Kim, H., Hyeon, K., Park, J., Kyung, K.U.: Dielectric elastomer actuator for soft robotics applications and challenges. Appl. Sci. 10, 640 (2020)

    Google Scholar 

  9. Arifeen, W.U., Kim, M., Choi, J., Yoo, K., Kurniawan, R., Ko, T.J.: Optimization of porosity and tensile strength of electrospun polyacrylonitrile nanofibrous membranes. Mater. Chem. Phys. 229, 310–318 (2019)

    Google Scholar 

  10. Wang, J., Chen, B., Cheng, X., Li, Y., Ding, M., You, J.: Hierarchically porous membranes with multiple channels: fabrications in PVDF/PMMA/PLLA blend and enhanced separation performance. J. Membr. Sci. 643, 120065 (2022)

    Google Scholar 

  11. Li, Q., Liu, Y., Liu, Y., Ji, Y., Cui, Z., Yan, F., Li, J., Younas, M., He, B.: Mg2+/Li+ separation by electric field assisted nanofiltration: the impacts of membrane pore structure, electric property and other process parameters. J. Membr. Sci. 662, 120982 (2022)

    Google Scholar 

  12. Wang, H., Zhang, H., Cheng, X.W., Liu, L., Chang, S., Mu, X., Ge, Y.: Microstructure and mechanical properties of GNPs and in-situ TiB hybrid reinforced Ti–6Al–4V matrix composites with 3D network architecture. Mater. Sci. Eng. A. 854, 143536 (2022)

    Google Scholar 

  13. Sun, R., Li, L., Feng, C., Kitipornchai, S., Yang, J.: Tensile behavior of polymer nanocomposite reinforced with graphene containing defects. Eur. Polym. J. 98, 475–482 (2018)

    Google Scholar 

  14. Mahmun, A., Kirtania, S.: Evaluation of elastic properties of graphene nanoplatelet/epoxy nanocomposites. Mater. Today Proc. 44, 1531–1535 (2021)

    Google Scholar 

  15. Mergen, Ö.B., Umut, E., Arda, E., Kara, S.A.: comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites. Polym. Test. 90, 106682 (2020)

    Google Scholar 

  16. Liu, J., Zhang, M., Guan, L., Wang, C., Shi, L., Jin, Y., Han, C., Wang, J., Han, Z.: Preparation of BT/GNP/PS/PVDF composites with controllable phase structure and dielectric properties. Polym. Test. 100, 107236 (2021)

    Google Scholar 

  17. Xia, X., Wang, Y., Zhong, Z., Weng, G.J.: A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon 111, 221–230 (2017)

    Google Scholar 

  18. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017)

    Google Scholar 

  19. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. B Eng. 110, 132–140 (2017)

    Google Scholar 

  20. Shen, H.S., Lin, F., Xiang, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 90, 899–914 (2017)

    Google Scholar 

  21. Song, M., Gong, Y., Yang, J., Zhu, W., Kitipornchai, S.: Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation. J. Sound Vib. 458, 89–108 (2019)

    Google Scholar 

  22. Song, M., Gong, Y., Yang, J., Zhu, W., Kitipornchai, S.: Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. J. Sound Vib. 468, 115115 (2020)

    Google Scholar 

  23. Li, X., Song, M., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. 95, 1807–1826 (2019)

    MATH  Google Scholar 

  24. Song, M., Zhou, L., Karunasena, W., Yang, J., Kitipornchai, S.: Nonlinear dynamic instability of edge-cracked functionally graded graphene-reinforced composite beams. Nonlinear Dyn. 109, 2423–2441 (2022)

    Google Scholar 

  25. Wang, Y., Feng, C., Yang, J., Zhou, D., Wang, S.: Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method. Comput. Methods Appl. Mech. Eng. 379, 113761 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Song, M., Li, X., Kitipornchai, S., Bi, Q., Yang, J.: Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates. Nonlinear Dyn. 95, 2333–2352 (2019)

    Google Scholar 

  27. Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances. Nonlinear Dyn. 104, 2051–2069 (2021)

    Google Scholar 

  29. Wang, Y., Feng, C., Zhao, Z., Lu, F., Yang, J.: Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout. Compos. Struct. 197, 72–79 (2018)

    Google Scholar 

  30. Ni, Z., Fan, Y., Hang, Z., Yang, J., Wang, Y., Feng, C.: Numerical investigation on nonlinear vibration of FG-GNPRC dielectric membrane with internal pores. Eng. Struct. 284, 115928 (2023)

    Google Scholar 

  31. Weng, G.J.: A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mech. Mater. 42, 886–893 (2010)

    Google Scholar 

  32. Su, Y., Li, J.J., Weng, G.J.: Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon 137, 222–233 (2018)

    Google Scholar 

  33. Wang, J., Li, J.J., Weng, G.J., Su, Y.: The effects of temperature and alignment state of nanofillers on the thermal conductivity of both metal and nonmetal based graphene nanocomposites. Acta Mater. 185, 461–473 (2020)

    Google Scholar 

  34. Hashemi, R., Weng, G.J.: A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96, 474–490 (2016)

    Google Scholar 

  35. Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 (2015)

    Google Scholar 

  36. Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014)

    Google Scholar 

  37. Dyre, J.C.: A simple model of ac hopping conductivity in disordered solids. Phys. Lett. 108, 457–461 (1985)

    Google Scholar 

  38. Ji, D., Xiao, C., Chen, K., Zhou, F., Gao, Y., Zhang, T., Ling, H.: Solvent-free green fabrication of PVDF hollow fiber MF membranes with controlled pore structure via melt-spinning and stretching. J. Membr. Sci. 621, 118953 (2021)

    Google Scholar 

  39. Odegard, G., Gates, T., Wise, K., Park, C., Siochi, E.: Constitutive modeling of nanotube–reinforced polymer composites. Compos. Sci. Technol. 63, 1671–1687 (2003)

    Google Scholar 

  40. Feng, C., Wang, Y., Kitipornchai, S., Yang, J.: Effects of reorientation of graphene platelets (GPLs) on Young’s Modulus of polymer nanocomposites under uni-axial stretching. Polymers 9, 532 (2017)

    Google Scholar 

  41. Li, B., Chen, H., Qiang, J., Hu, S., Zhu, Z., Wang, Y.: Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J. Phys. D. Appl. Phys. 44, 155301 (2011)

    Google Scholar 

  42. Gonçalves, P.B., Soares, R.M., Pamplona, D.: Nonlinear vibrations of a radially stretched circular hyperelastic membrane. J. Sound Vib. 327, 231–248 (2009)

    Google Scholar 

  43. Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, New York (1958)

    Google Scholar 

  44. Selvadurai, A.P.S.: Deflections of a rubber membrane. J. Mech. Phys. Solids. 54, 1093–1119 (2006)

    MATH  Google Scholar 

  45. Gent, A.N.: Elastic instabilities in rubber. Int. J. Non-Linear Mech. 40, 165–175 (2005)

    MATH  Google Scholar 

  46. Pamplona, D.C., Gonçalves, P.B., Lopes, S.R.X.: Finite deformations of cylindrical membrane under internal pressure. Int. J. Mech. Sci. 48, 683–696 (2006)

    Google Scholar 

  47. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)

    Google Scholar 

  48. Ni, Z., Zhu, F., Fan, Y., Yang, J., Hang, Z., Feng, C., Yang, J.: Numerical study on nonlinear vibration of FG-GNPRC circular membrane with dielectric properties. Mech. Adv. Mater. Struct. (2023). https://doi.org/10.1080/15376494.2023.2184005

    Article  Google Scholar 

  49. Mrabet, K., Zaouali, E., Najar, F.: Internal resonance and nonlinear dynamics of a dielectric elastomer circular membrane. Int. J. Solids Struct. 236–237, 111338 (2022)

    Google Scholar 

  50. Ni, Z., Fan, Y., Hang, Z., Zhu, F., Wang, Y., Feng, C., Yang, J.: Damped vibration analysis of graphene nanoplatelet reinforced dielectric membrane using Taylor series expansion and differential quadrature methods. Thin-Walled Struct. 184, 110493 (2023)

    Google Scholar 

  51. Zhu, F., Feng, C., Wang, Y., Qian, Q., Hang, Z., Yang, J., Wang, S.: Damped nonlinear dynamics of FG-GPLRC dielectric beam with active tuning using DQ and IHB methods. Int. J. Struct. Stab. Dyn. 23, 2350079 (2022)

    MathSciNet  Google Scholar 

  52. He, F., Lau, S., Chan, H.L., Fan, J.: High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from Innovative and Entrepreneurial Talents of Jiangsu Province of China and the Australian Research Council grant under the Discovery Project Scheme (DP210103656, DP230100548).

Funding

Innovative and Entrepreneurial Talents of Jiangsu Province of China, Australian Research Council, DP210103656, Jie Yang, DP230100548, Jie Yang.

Author information

Authors and Affiliations

Authors

Contributions

ZN: Writing—original draft, Formal analysis, Methodology, Data curation. YF: Validation. JY: Visualization. ZH: Investigation. CF: Writing—review & editing, Conceptualization, Supervision, Funding acquisition. JY: Writing—review & editing, Funding acquisition.

Corresponding author

Correspondence to Chuang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ \begin{gathered} A_{1} = \left( {\eta \rho + u} \right)^{3} \left[ {\left( {\eta + u_{\rho } } \right)^{2} + \left( {w_{\rho } } \right)^{2} } \right]^{3} \hfill \\ A_{2} \rho ^{2} \left[ {\left( {\eta + u_{\rho } } \right)^{2} + \left( {w_{\rho } } \right)^{2} } \right]^{2} - \left( {\eta \rho + u} \right)\left[ {\left( {\eta + u_{\rho } } \right)^{2} + \left( {w_{\rho } } \right)^{2} } \right]\left[ {3\rho \left( {\eta + u_{\rho } } \right) + \rho ^{2} u_{{\rho \rho }} } \right] \hfill \\ + 2\rho ^{2} \left( {\eta + u_{\rho } } \right)^{2} \left[ {\left( {\eta + u_{\rho } } \right)^{2} + \left( {w_{\rho } } \right)^{2} } \right] + 4\rho ^{2} \left( {\eta + u_{\rho } } \right)\left( {\eta \rho + u} \right)\left[ {\left( {\eta + u_{\rho } } \right)u_{{\rho \rho }} + w_{\rho } w_{{\rho \rho }} } \right] \hfill \\ A_{3} = \left[ {\left( {\eta + u_{\rho } } \right)^{2} + \left( {w_{\rho } } \right)^{2} } \right]\left[ {2\rho ^{2} w_{\rho } \left( {\eta + u_{\rho } } \right) - \left( {3\rho w_{\rho } + \rho ^{2} w_{{\rho \rho }} } \right)\left( {\eta \rho + u} \right)} \right] + 4\rho ^{2} w_{\rho } \left( {\eta \rho + u} \right)\left[ {\left( {\eta + u_{\rho } } \right)u_{{\rho \rho }} + w_{\rho } w_{{\rho \rho }} } \right] \hfill \\ A_{4} = - 4\eta \lambda _{1} u_{\rho } u_{{\rho \rho }} - \frac{{10\lambda _{1} }}{3}\left( {w_{\rho } } \right)^{2} u_{{\rho \rho }} - \frac{{20\lambda _{1} }}{3}u_{\rho } w_{\rho } w_{{\rho \rho }} + \frac{{4\eta \lambda _{1} }}{3}w_{\rho } w_{{\rho \rho }} + 10\lambda _{1} \left( {u_{\rho } } \right)^{2} u_{{\rho \rho }} \hfill \\ A_{5} = \frac{{8\eta \lambda _{1} }}{3}w_{\rho } u_{{\rho \rho }} + \frac{{8\eta \lambda _{1} }}{3}u_{\rho } w_{{\rho \rho }} - \frac{{20\lambda _{1} }}{3}u_{\rho } w_{\rho } u_{{\rho \rho }} - \frac{{10\lambda _{1} }}{3}\left( {u_{\rho } } \right)^{2} w_{{\rho \rho }} + 2\lambda _{1} \left( {w_{\rho } } \right)^{2} w_{{\rho \rho }} \hfill \\ A_{6} = b_{1} \eta ^{2} \left( { - \frac{1}{{\chi ^{2} }}U + \frac{1}{\chi }U_{\chi } + U_{{\chi \chi }} } \right) - b_{1} \kappa \left[ {\frac{\eta }{{\chi ^{3} }}U^{2} - \frac{{2\eta }}{\chi }UU_{{\chi \chi }} } \right. - \frac{\eta }{\chi }\left( {U_{\chi } } \right)^{2} \hfill \\ \left. {\kappa \frac{1}{{\chi ^{3} }}U^{2} U_{\chi } - \kappa \frac{{U^{2} }}{{\chi ^{2} }}U_{{\chi \chi }} - \kappa \frac{1}{{\chi ^{2} }}U\left( {U_{\chi } } \right)^{2} + \frac{\eta }{\chi }\left( {W_{\chi } } \right)^{2} + \kappa \frac{1}{{\chi ^{2} }}U\left( {W_{\chi } } \right)^{2} } \right] \hfill \\ A_{7} = b_{1} \eta ^{2} \left( {\frac{1}{\chi }W_{\chi } + W_{{\chi \chi }} } \right) + b_{1} \kappa \left[ {\frac{{2\eta }}{\chi }U_{\chi } W_{\chi } + \frac{{2\eta }}{\chi }UW_{{\chi \chi }} + \frac{2}{{\chi ^{2} }}\kappa UU_{\chi } W_{\chi } - \frac{{U^{2} }}{{\chi ^{3} }}\kappa W_{\chi } + \frac{{U^{2} }}{{\chi ^{2} }}\kappa W_{{\chi \chi }} } \right] \hfill \\ A_{8} = a_{{55}} \kappa \left[ {\frac{4}{3}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } } \right. + \frac{3}{{\chi _{i} ^{3} }}U_{i} ^{2} + \frac{1}{3}\frac{1}{{\chi _{i} }}\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right)^{2} - \frac{2}{{\chi _{i} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } - 4\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{_{{im}} }}^{{\left( 2 \right)}} U_{m} } \left. { - \frac{3}{{\chi _{i} }}\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } } \right)^{2} } \right] \hfill \\ A_{9} = a_{{66}} \kappa ^{2} \left[ {\frac{6}{{\chi _{i} }}\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } } \right)^{3} - \frac{6}{{\chi _{i} ^{4} }}U_{i} ^{3} } \right. - \frac{3}{{\chi _{i} ^{3} }}U_{i} ^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } + \frac{3}{{\chi _{i} ^{2} }}U_{i} ^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } + \frac{3}{{\chi _{i} ^{2} }}U_{i} \left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } } \right)^{2} \hfill \\ + \frac{1}{{\chi _{i} ^{2} }}U_{i} \left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right)^{2} - \frac{8}{3}\frac{1}{{\chi _{i} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } + \frac{8}{{\chi _{i} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } - \frac{{10}}{3}\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right)^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } \hfill \\ - \frac{{10}}{3}\frac{1}{{\chi _{i} }}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right)^{2} - \frac{{20}}{3}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } + \left. {10\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } } \right)^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } } \right] \hfill \\ A_{{10}} = a_{{55}} \kappa \left[ {\frac{2}{{\chi _{i} }}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } + \frac{4}{{3\chi _{i} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } } \right. + \frac{8}{3}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } \left. { + \frac{8}{3}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } } \right] \hfill \\ A_{{11}} = a_{{66}} \kappa ^{2} \left[ {\frac{1}{{\chi _{i} ^{3} }}U_{i} ^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right. - \frac{2}{{\chi _{i} ^{2} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } - \frac{1}{{\chi _{i} ^{2} }}U_{i} ^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } + \frac{2}{{3\chi _{i} }}\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right)^{3} \hfill \\ - \frac{6}{{\chi _{i} }}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } } \right)^{2} - \frac{8}{{3\chi _{i} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } - \frac{{20}}{3}\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} U_{m} } \hfill \\ - \frac{{10}}{3}\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } } \right)^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } - \frac{8}{{3\chi _{i} }}U_{i} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} U_{m} } \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } + \left. {2\left( {\sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 1 \right)}} W_{m} } } \right)^{2} \sum\limits_{{m = 1}}^{N} {c_{{im}}^{{\left( 2 \right)}} W_{m} } } \right] \hfill \\ \end{gathered} $$
(57)

where

$$ \left\{ \begin{gathered} b_{1} = \sum\limits_{i = 1}^{{N_{L} }} {\int_{{h_{i} }}^{{h_{i + 1} }} {\left( {\frac{{V_{(i)}^{2} \varepsilon_{0} \varepsilon_{r(i)} }}{{C_{0} h^{3} }}} \right)} {\text{d}}z} \hfill \\ a_{55} = \frac{{6a_{1} }}{{\eta^{7} }} \hfill \\ a_{66} = \frac{{6a_{1} }}{{\eta^{8} }} \hfill \\ \end{gathered} \right. $$
(58)

Appendix 2

$$ {\varvec{K}}_{{{\text{NL}}}} = \left[ {\begin{array}{*{20}c} {{\varvec{K}}_{{{\text{NL}}}} \left( {11} \right)} & {{\varvec{K}}_{{{\text{NL}}}} \left( {12} \right)} \\ {{\varvec{K}}_{{{\text{NL}}}} \left( {21} \right)} & {{\varvec{K}}_{{{\text{NL}}}} \left( {22} \right)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} A & \ldots & B & E & \cdots & F \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ C & \cdots & D & G & \cdots & H \\ I & \cdots & J & M & \cdots & N \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ K & \cdots & L & O & \cdots & P \\ \end{array} } \right] $$
(59)

where

$$ \begin{aligned} A = & a_{55} \kappa \left( {\frac{3}{{\chi_{i}^{3} }}U_{1} } \right) - \frac{{2a_{55} \kappa }}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} - 4a_{55} \kappa \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} } - \frac{{3a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} - a_{66} \kappa^{2} \left( {\frac{6}{{\chi_{i}^{4} }}U_{1}^{2} } \right) \\ + & \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{11}^{\left( 1 \right)} - \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}\left( {U_{1}^{2} } \right)c_{11}^{\left( 1 \right)} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)} c_{11}^{\left( 1 \right)} \\ + & \frac{{8a_{66} \kappa^{2} }}{{\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} + 10a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} \\ - & a_{33} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{1} - \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} } \right] - a_{44} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{1} \sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}U_{1} \sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } } \right)^{2} + \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } } \right)^{2} } \right] \\ \end{aligned} $$
(60)
$$ \begin{aligned} B = & a_{55} \kappa \left( {\frac{3}{{\chi_{i}^{3} }}U_{1} } \right) - \frac{{2a_{55} \kappa }}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} - 4a_{55} \kappa \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} } - \frac{{3a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} - a_{66} \kappa^{2} \left( {\frac{6}{{\chi_{i}^{4} }}U_{1}^{2} } \right) \\ + & \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{1N}^{\left( 1 \right)} - \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}\left( {U_{1}^{2} } \right)c_{1N}^{\left( 1 \right)} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)} c_{1N}^{\left( 1 \right)} \\ + & \frac{{8a_{66} \kappa^{2} }}{{\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} + 10a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} \\ - & a_{33} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{1} - \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} } \right] - a_{44} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{1} \sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}U_{1} \sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } } \right)^{2} + \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } } \right)^{2} } \right] \\ \end{aligned} $$
(61)
$$ \begin{aligned} C = & a_{55} \kappa \left( {\frac{3}{{\chi_{i}^{3} }}U_{N} } \right) - \frac{{2a_{55} \kappa }}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} - 4a_{55} \kappa \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} } - \frac{{3a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} - a_{66} \kappa^{2} \left( {\frac{6}{{\chi_{i}^{4} }}U_{N}^{2} } \right) \\ + & \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{N1}^{\left( 1 \right)} - \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}\left( {U_{N}^{2} } \right)c_{N1}^{\left( 1 \right)} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)} c_{N1}^{\left( 1 \right)} \\ + & \frac{{8a_{66} \kappa^{2} }}{{\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} + 10a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} \\ - & a_{33} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{N} - \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} } \right] - a_{44} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{N} \sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}U_{N} \sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } } \right)^{2} + \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } } \right)^{2} } \right] \\ \end{aligned} $$
(63)
$$ \begin{aligned} D = & a_{55} \kappa \left( {\frac{3}{{\chi_{i}^{3} }}U_{N} } \right) - \frac{{2a_{55} \kappa }}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} - 4a_{55} \kappa \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} } - \frac{{3a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} - a_{66} \kappa^{2} \left( {\frac{6}{{\chi_{i}^{4} }}U_{N}^{2} } \right) \\ + & \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{NN}^{\left( 1 \right)} - \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}\left( {U_{N}^{2} } \right)c_{NN}^{\left( 1 \right)} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} + \frac{{3a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)} c_{NN}^{\left( 1 \right)} \\ + & \frac{{8a_{66} \kappa^{2} }}{{\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} + 10a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} \\ - & a_{33} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{N} - \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} } \right] - a_{44} \left[ {\frac{1}{{\chi_{i}^{3} }}U_{N} \sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}U_{N} \sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} U_{m} } - \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } } \right)^{2} + \frac{1}{{\chi_{i}^{2} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } } \right)^{2} } \right] \\ \end{aligned} $$
(63)
$$ \begin{aligned} E = & \frac{{a_{55} \kappa }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi^{2}_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} \\ - & \frac{{10a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} - a_{33} \left[ {\frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} } \right] \\ \end{aligned} $$
(64)
$$ \begin{aligned} F = & \frac{{a_{55} \kappa }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi^{2}_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} \\ - & \frac{{10a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} - a_{33} \left[ {\frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} } \right] \\ \end{aligned} $$
(65)
$$ \begin{aligned} G = & \frac{{a_{55} \kappa }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi^{2}_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} \\ - & \frac{{10a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} - a_{33} \left[ {\frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} } \right] \\ \end{aligned} $$
(66)
$$ \begin{aligned} H = & \frac{{a_{55} \kappa }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi^{2}_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} \\ - & \frac{{10a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} - a_{33} \left[ {\frac{1}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} } \right] \\ \end{aligned} $$
(67)
$$ \begin{aligned} I = & \frac{{2a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{{3\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} + \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)} c_{11}^{\left( 1 \right)} - \frac{{2a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} \\ - & \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)} c_{11}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} \\ + & a_{33} \left[ {\frac{2}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} + \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} W_{m} } } \right] + a_{44} \left[ {\frac{2}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } \sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } - \frac{{U_{1} }}{{\chi_{i}^{3} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } + \frac{{U_{1} }}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} W_{m} } } \right] \\ \end{aligned} $$
(68)
$$ \begin{aligned} J = & \frac{{2a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{{3\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} + \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)} c_{1N}^{\left( 1 \right)} - \frac{{2a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} \\ - & \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{1} \sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)} c_{1N}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} \\ + & a_{33} \left[ {\frac{2}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} + \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} W_{m} } } \right] + a_{44} \left[ {\frac{2}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} U_{m} } \sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } - \frac{{U_{1} }}{{\chi_{i}^{3} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 1 \right)} W_{m} } + \frac{{U_{1} }}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{1m} }}^{\left( 2 \right)} W_{m} } } \right] \\ \end{aligned} $$
(69)
$$ \begin{aligned} K = & \frac{{2a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{{3\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} + \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)} c_{N1}^{\left( 1 \right)} - \frac{{2a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} \\ - & \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)} c_{N1}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} \\ + & a_{33} \left[ {\frac{2}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} + \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} W_{m} } } \right] + a_{44} \left[ {\frac{2}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } \sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } - \frac{{U_{N} }}{{\chi_{i}^{3} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } + \frac{{U_{N} }}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} W_{m} } } \right] \\ \end{aligned} $$
(70)
$$ \begin{aligned} L = & \frac{{2a_{55} \kappa }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} + \frac{{4a_{55} \kappa }}{{3\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} + \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)} c_{NN}^{\left( 1 \right)} - \frac{{2a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} \\ - & \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{2} }}U_{N} \sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} - \frac{{20a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)} c_{NN}^{\left( 1 \right)} - \frac{{10a_{66} \kappa^{2} }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} \\ + & a_{33} \left[ {\frac{2}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} + \frac{2}{{\chi_{i} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} W_{m} } } \right] + a_{44} \left[ {\frac{2}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} U_{m} } \sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } - \frac{{U_{N} }}{{\chi_{i}^{3} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 1 \right)} W_{m} } + \frac{{U_{N} }}{{\chi_{i}^{2} }}\sum\limits_{m = 1}^{N} {c_{{_{Nm} }}^{\left( 2 \right)} W_{m} } } \right] \\ \end{aligned} $$
(71)
$$ \begin{aligned} M = & \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}U_{1}^{2} c_{11}^{\left( 1 \right)} - \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{11}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{11}^{\left( 1 \right)} \\ + & \frac{{2a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)^{2} c_{11}^{\left( 1 \right)} + 2a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{11}^{\left( 1 \right)} \\ \end{aligned} $$
(72)
$$ \begin{aligned} N = & \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}U_{1}^{2} c_{1N}^{\left( 1 \right)} - \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{1N}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{1} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} U_{m} } } \right)c_{1N}^{\left( 1 \right)} \\ + & \frac{{2a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)^{2} c_{1N}^{\left( 1 \right)} + 2a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{1m}^{\left( 2 \right)} W_{m} } } \right)c_{1N}^{\left( 1 \right)} \\ \end{aligned} $$
(73)
$$ \begin{aligned} O = & \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}U_{N}^{2} c_{N1}^{\left( 1 \right)} - \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{N1}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{N1}^{\left( 1 \right)} \\ + & \frac{{2a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)^{2} c_{N1}^{\left( 1 \right)} + 2a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{N1}^{\left( 1 \right)} \\ \end{aligned} $$
(74)
$$ \begin{aligned} P = & \frac{{8a_{55} \kappa }}{3}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} + \frac{{a_{66} \kappa^{2} }}{{\chi_{i}^{3} }}U_{N}^{2} c_{NN}^{\left( 1 \right)} - \frac{{6a_{66} \kappa^{2} }}{{\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} U_{m} } } \right)^{2} c_{NN}^{\left( 1 \right)} - \frac{{8a_{66} \kappa^{2} }}{{3\chi_{i} }}U_{N} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} U_{m} } } \right)c_{NN}^{\left( 1 \right)} \\ + & \frac{{2a_{66} \kappa^{2} }}{{3\chi_{i} }}\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)^{2} c_{NN}^{\left( 1 \right)} + 2a_{66} \kappa^{2} \left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 1 \right)} W_{m} } } \right)\left( {\sum\limits_{m = 1}^{N} {c_{Nm}^{\left( 2 \right)} W_{m} } } \right)c_{NN}^{\left( 1 \right)} \\ \end{aligned} $$
(75)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Z., Fan, Y., Yang, J. et al. Nonlinear dynamics of FG-GNPRC multiphase composite membranes with internal pores and dielectric properties. Nonlinear Dyn 111, 16679–16703 (2023). https://doi.org/10.1007/s11071-023-08754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08754-7

Keywords

Navigation