Skip to main content
Log in

Performance analysis and optimization of bimodal nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear energy sink (NES) is a typical representative of emerging vibration control devices in recent years. With the increasing performance requirements of vibration suppression equipment for precision instruments and structural safety, it is necessary to research efficient and stable nonlinear energy sinks. A novel NES with inerter and grounded stiffness (IG-NES) is presented to address three key problems, i.e., the performance degradation caused by the high-branch response, the underutilization of the two-terminal inertia feature of the inerter, and the unknown damping effect of the combined structure of inerter and grounded stiffness. The amplitude–frequency response equation of the primary system is obtained by the harmonic balance method, and its parametric effects are analyzed. According to the H optimization criterion, the multi-objective grey wolf algorithm is used to obtain the optimal system parameters. This model can be simplified to obtain the cubic stiffness NES, and the feasibility of eliminating the high-branch response by parameter optimization without changing its structure is explored. The results show that the IG-NES system has rich dynamic characteristics. Relying on parameter optimization, the high-branch response of the cubic stiffness NES can be eliminated. The damping effect and response mechanism under various excitations are different. The vibration suppression capability of IG-NES under different mass ratios and excitation amplitude ratios is significant. The vibration attenuation efficiency can reach more than 99%, and the displacement transmissibility of the primary system can reach below zero. The high-branch response is also eliminated. Stable solutions are available in the whole-frequency band. Moreover, it has certain robustness in its parameters. The amplitude–frequency curves of some optimal performance cases have double peaks with almost equal height, where the frequency ratio of the left peak is zero, similar to the grounded linear dynamic vibration absorber (DVA). The damping effect and bandwidth are superior to the basic NES, DVA, and equivalently improved DVA. This model can be applied to large and precise equipment, and its performance can be further enhanced in the future by new structures or devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems J. Vib. Acoust. 123(3), 324–332 (2001). https://doi.org/10.1115/1.1368883

    Article  Google Scholar 

  2. Guo, H., Yang, T., Chen Y., et al.: Singularity analysis on vibration reduction of a nonlinear energy sink system. Mech. Syst. Sig. Process. 173, 109074 (2022). https://doi.org/10.1016/j.ymssp.2022.109074

  3. Parseh, M., Dardel, M., Ghasemi, M.H.: Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 50–71 (2015). https://doi.org/10.1016/j.cnsns.2015.04.020

    Article  MathSciNet  MATH  Google Scholar 

  4. Pacheco, D.R.Q., Marques, F.D., Ferreira, A.J.M.: Panel flutter suppression with nonlinear energy sinks: Numerical modeling and analysis. Int. J. Non-Linear Mech. 106, 108–114 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.08.009

    Article  Google Scholar 

  5. Anubi, O.M., Crane, C.: A new semiactive variable stiffness suspension system using combined skyhook and nonlinear energy sink-based controllers. IEEE Trans. Control Syst. Technol. 23(3), 937–947 (2015). https://doi.org/10.1109/TCST.2014.2353303

    Article  Google Scholar 

  6. Fasihi, A., Shahgholi, M., Ghahremani, S.: The effects of nonlinear energy sink and piezoelectric energy harvester on aeroelastic instability of an airfoil. J. Vib. Control 28(11–12), 1418–1432 (2022). https://doi.org/10.1177/1077546321993585

    Article  MathSciNet  Google Scholar 

  7. Li, X., Zhang, Y., Ding, H., et al.: Integration of a nonlinear energy sink and a piezoelectric energy harvester. Appl. Math. Mech.-Engl. Ed. 38(7), 1019–1030 (2017). https://doi.org/10.1007/s10483-017-2220-6

    Article  MathSciNet  Google Scholar 

  8. Yang, T., Zhou S., Fang, S., et al.: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Appl. Phys. Rev. 8(3), 031317 (2021). https://doi.org/10.1063/5.0051432

  9. Yao, H., Cao, Y., Ding, Z., et al.: Using grounded nonlinear energy sinks to suppress lateral vibration in rotor systems. Mech. Syst. Sig. Process. 124, 237–253 (2019). https://doi.org/10.1016/j.ymssp.2019.01.054

    Article  Google Scholar 

  10. Chen, Y., Qian, Z., Chen, K., et al.: Seismic performance of a nonlinear energy sink with negative stiffness and sliding friction. Struct. Control Health Monit. 26(11), e2437 (2019). https://doi.org/10.1002/stc.2437

  11. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76(4), 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  12. Charlemagne, S., Lamarque, C.H., Ture Savadkoohi, A.: Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials. J. Sound Vib. 376, 33–47 (2016). https://doi.org/10.1016/j.jsv.2016.03.018

    Article  Google Scholar 

  13. Yao, H., Cao, Y., Zhang, S., et al.: A novel energy sink with piecewise linear stiffness. Nonlinear Dyn. 94(3), 2265–2275 (2018). https://doi.org/10.1007/s11071-018-4488-3

    Article  Google Scholar 

  14. Geng, X., Ding, H., Mao, X., et al.: Nonlinear energy sink with limited vibration amplitude. Mech. Syst. Sig. Process. 156, 107625 (2021). https://doi.org/10.1016/j.ymssp.2021.107625

  15. Wang, C., Krings, E.J., Allen, A.T., et al.: Low-to-high frequency targeted energy transfer using a nonlinear energy sink with softening-hardening nonlinearity. Int. J. Non-Linear Mech. 147, 104194 (2022). https://doi.org/10.1016/j.ijnonlinmec.2022.104194

  16. Yang, T., Zhang, Y., Zhou, S., et al.: Wideband energy harvesting using nonlinear energy sink with bio-inspired hexagonal skeleton structure. Commun. Nonlinear Sci. Numer. Simul. 111, 106465 (2022). https://doi.org/10.1016/j.cnsns.2022.106465

  17. Song, Y., Zhang, C., Li, Z., et al.: Study on dynamic characteristics of bio-inspired vibration isolation platform. J. Vib. Control 28(11–12), 1470–1485 (2022). https://doi.org/10.1177/1077546321993614

    Article  MathSciNet  Google Scholar 

  18. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., et al.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48(3), 285–318 (2007). https://doi.org/10.1007/s11071-006-9089-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Boroson, E., Missoum, S., Mattei, P.O., et al.: Optimization under uncertainty of parallel nonlinear energy sinks. J. Sound Vib. 394, 451–464 (2017). https://doi.org/10.1016/j.jsv.2016.12.043

    Article  Google Scholar 

  20. Tsiatas, G.C., Charalampakis, A.E.: A new hysteretic nonlinear energy sink (HNES). Commun. Nonlinear Sci. Numer. Simul. 60, 1–11 (2018). https://doi.org/10.1016/j.cnsns.2017.12.014

    Article  MATH  Google Scholar 

  21. Li, T., Seguy, S.: A. Berlioz, Dynamics of cubic and vibro-impact nonlinear energy sink: Analytical, numerical, and experimental analysis. J. Vib. Acoust. 138(3), 031010 (2016). https://doi.org/10.1115/1.4032725

  22. Selwanis, M.M., Franzini, G.R., Béguin, C., et al.: Wind tunnel demonstration of galloping mitigation with a purely nonlinear energy sink. J. Fluids Struct. 100, 103169 (2021). https://doi.org/10.1016/j.jfluidstructs.2020.103169

  23. Lu, X., Liu, Z., Lu, Z.: Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Struct. Control Health Monit. 24(12), e2033 (2017). https://doi.org/10.1002/stc.2033

  24. Wang, J., Zhang, C., Li, H., et al.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. 237, 112184 (2021). https://doi.org/10.1016/j.engstruct.2021.112184

  25. Zang, J., Zhang, Y.: Responses and bifurcations of a structure with a lever-type nonlinear energy sink. Nonlinear Dyn. 98, 889–906 (2019). https://doi.org/10.1007/s11071-019-05233-w

    Article  Google Scholar 

  26. Zang, J., Cao, R., Zhang, Y., et al.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 95, 105620 (2021). https://doi.org/10.1016/j.cnsns.2020.105620

  27. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91(1), 733–754 (2018). https://doi.org/10.1007/s11071-017-3906-2

    Article  Google Scholar 

  28. Roncen, T., Michon, G., Manet, V.: Design and experimental analysis of a pneumatic Nonlinear Energy Sink. Mech. Syst. Sig. Process. 190(1), 110088 (2023). https://doi.org/10.1016/j.ymssp.2022.110088

  29. Wang, T., Tang, Y., Yang, TZ, et al.: Bistable enhanced passive absorber based on integration of nonlinear energy sink with acoustic black hole beam. J. Sound Vib. 544(3), 117409 (2023). https://doi.org/10.1016/j.jsv.2022.117409

  30. Chen, L., Li, X., Lu, Z., et al.: Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J. Sound Vib. 451, 99–119 (2019). https://doi.org/10.1016/j.jsv.2019.03.005

    Article  Google Scholar 

  31. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Autom. Control 47(10), 1648–1662 (2002). https://doi.org/10.1109/TAC.2002.803532

    Article  MathSciNet  MATH  Google Scholar 

  32. Javidialesaadi, A., Wierschem, N.E.: An inerter-enhanced nonlinear energy sink. Mech. Syst. Sig. Process. 129, 449–454 (2019). https://doi.org/10.1016/j.ymssp.2019.04.047

    Article  Google Scholar 

  33. Zhang, Z., Lu, Z., Ding, H., et al.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019). https://doi.org/10.1016/j.jsv.2019.03.014

    Article  Google Scholar 

  34. Zhang, Z., Zhang, Y., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100(3), 2121–2139 (2020). https://doi.org/10.1007/s11071-020-05606-6

    Article  Google Scholar 

  35. Zhang, Y., Lu, Y., Zhang, W., et al.: Nonlinear energy sink with inerter. Mech. Syst. Sig. Process. 125, 52–64 (2019). https://doi.org/10.1016/j.ymssp.2018.08.026

    Article  Google Scholar 

  36. Brzeski, P., Pavlovskaia, E., Kapitaniak, T., et al.: The application of inerter in tuned mass absorber. Int. J. Non-Linear Mech. 70, 20–29 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.10.013

    Article  Google Scholar 

  37. Huang, Z., Hua, X., Chen, Z., et al.: Optimal design of TVMD with linear and nonlinear viscous damping for SDOF systems subjected to harmonic excitation. Struct. Control Health Monit. 26(10), e2413 (2019). https://doi.org/10.1002/stc.2413

  38. Chen, H., Mao, X., Ding, H., et al.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Sig. Process. 135, 106383 (2020). https://doi.org/10.1016/j.ymssp.2019.106383

  39. Sui, P., Shen, Y., Yang, S.: Parameters optimization of a dynamic vibration absorber with inerter and grounded stiffness. Chin. J. Theor. Appl. Mech. 53(5), 1412–1422 (2021). https://doi.org/10.6052/0459-1879-21-058

    Article  Google Scholar 

  40. Sui, P., Shen, Y.J., Wang, X.N.: Study on response mechanism of nonlinear energy sink with inerter and grounded stiffness. Nonlinear Dyn. 111, 7157–7179 (2023). https://doi.org/10.1007/s11071-022-08226-4

    Article  Google Scholar 

  41. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D. 237(13), 1719–1733 (2008). https://doi.org/10.1016/j.physd.2008.01.019

    Article  MathSciNet  MATH  Google Scholar 

  42. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes. Nonlinear Dyn. 51(1), 31–46 (2008). https://doi.org/10.1007/s11071-006-9167-0

    Article  MATH  Google Scholar 

  43. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51(1), 47–57 (2007). https://doi.org/10.1007/s11071-006-9168-z

  44. Starosvetsky, Y., Gendelman, O.V.: Dynamics of a strongly nonlinear vibration absorber coupled to a harmonically excited two-degree-of-freedom system. J. Sound Vib. 312(1–2), 234–256 (2008). https://doi.org/10.1016/j.jsv.2007.10.035

    Article  Google Scholar 

  45. Mamaghani, A.E., Khadem, S.E., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86(3), 1761–1795 (2016). https://doi.org/10.1007/s11071-016-2992-x

    Article  MATH  Google Scholar 

  46. Chen, J., He, W., Zhang, W., et al.: Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 91(2), 885–904 (2018). https://doi.org/10.1007/s11071-017-3917-z

    Article  Google Scholar 

  47. Chen, J., Sun, M., Hu, W., et al.: Performance of non-smooth nonlinear energy sink with descending stiffness. Nonlinear Dyn. 100(1), 255–267 (2020). https://doi.org/10.1007/s11071-020-05528-3

    Article  Google Scholar 

  48. Song, W., Liu, Z., Lu, C., et al.: Analysis of vibration suppression performance of nonlinear energy sink with negative stiffness. J. Vib. Eng. Technol. 10, 1481–1493 (2022). https://doi.org/10.1007/s42417-022-00462-7

    Article  Google Scholar 

  49. He, M., Tang, Y., Ding, Q.: Dynamic analysis and optimization of a cantilevered beam with both the acoustic black hole and the nonlinear energy sink. J. Intell. Mater. Syst. Struct. 33(1), 70–83 (2022). https://doi.org/10.1177/1045389x211011679

    Article  Google Scholar 

  50. McCormick, C.A., Shepherd, M.R.: Design optimization and performance comparison of three styles of one-dimensional acoustic black hole vibration absorbers. J. Sound Vib. 470, 115164 (2020). https://doi.org/10.1016/j.jsv.2019.115164

  51. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  52. Mirjalili, S., Saremi, S., Mirjalili, S.M., et al.: Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016). https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  53. Mickens, R.E.: Truly nonlinear oscillations: harmonic balance, parameter expansions, iteration, and averaging methods. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  54. Thompson, J.M.T., Stewart, H.B.: Nonlinear dynamics and chaos. Wiley, New York (2002)

    MATH  Google Scholar 

  55. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Cham (2013)

  56. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008). https://doi.org/10.1016/j.jsv.2007.12.023

    Article  Google Scholar 

  57. Cheung, Y.L., Wong, W.O.: H-infinity optimization of a variant design of the dynamic vibration absorber—Revisited and new results. J. Sound Vib. 330(16), 3901–3912 (2011). https://doi.org/10.1016/j.jsv.2011.03.027

    Article  Google Scholar 

  58. Seto, K.: Dynamic vibration absorber and its applications. CORONA Publishing, Pondicherry (2010)

  59. Ding, H., Chen, L.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the support by National Natural Science Foundation of China (U1934201 and 12272242), Project for Postgraduate Innovation Ability Training Subsidy of Hebei Province Education Department (CXZZSS2022108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Sui, P. & Wang, X. Performance analysis and optimization of bimodal nonlinear energy sink. Nonlinear Dyn 111, 16813–16830 (2023). https://doi.org/10.1007/s11071-023-08737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08737-8

Keywords

Navigation