Skip to main content
Log in

A new locally active memristor and its chaotic system with infinite nested coexisting attractors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new nonvolatile locally active memristor based on Chua’s unfolding theorem. The power-off plot confirms nonvolatility of the memristor, and then the DC V–I diagram demonstrates its local activity. By using the small signal analysis method, we derive the memristive equivalent circuit, which can be used for dynamical studies near the operating points in locally active regions. After that, a new memristive chaotic system is designed. It is found that the system can produce infinite nested coexisting attractors and transient dynamical behaviors. Finally, analog circuit experiments further confirm the validity of the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availibility

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  2. Liang, Y., Wang, S.C., Dong, Y.J., Lu, Z.Z., Wang, G.Y.: Locally-active memristors-based reactance-less oscillator. Ieee Trans. Circuits Syst. Ii-Express Briefs 70(1), 321–325 (2023)

    Google Scholar 

  3. Chen, P., Zhang, X.M., Liu, Q., Liu, M.: Nbo2-based locally active memristors: from physical mechanisms to performance optimization. Appl. Phys. Mater. Sci. Process. 128(12), (2022)

  4. Brown, T.D., Bohaichuk, S.M., Islam, M., Kumar, S., Pop, E., Williams, R.S.: Electro-thermal characterization of dynamical vo2 memristors via local activity modeling. Adv. Mater. (2022)

  5. Yu, J.T., Mu, X.M., Xi, X.M., Wang, S.N.: A memristor model with piecewise window function. Radioengineering 22(4), 969–974 (2013)

    Google Scholar 

  6. Fu, J.Y., Liao, Z.H., Gong, N., Wang, J.H.: Mitigating nonlinear effect of memristive synaptic device for neuromorphic computing. Ieee J. Emerg. Sel. Topics Circuits Syst. 9(2), 377–387 (2019)

    Google Scholar 

  7. Messaris, I., Ascoli, A., Demirkol, A.S., Tetzlaff, R.: High frequency response of non-volatile memristors. IEEE Trans. Circuits Syst. I Regular Papers 70(2), 566–578 (2023)

    Google Scholar 

  8. Chua, Leon: Everything You Wish to Know About Memristors but Are Afraid to Ask, pp. 89–157. Springer International Publishing, Cham, (2019)

  9. Si, Gangquan, Diao, Lijie, Zhu, Jianwei, Lei, Yuhang, Oresanya, Babajide Oluwatosin, Zhang, Yanbin: Modeling and character analyzing of current-controlled memristors with fractional kinetic transport. Commun. Nonlinear Sci. Numer. Simul. 48, 224–235 (2017)

    Google Scholar 

  10. Xavier, G.M.T., Castaneda, F.G., Nava, L.M.F., Cadenas, J.A.M.: Memristive recurrent neural network. Neurocomputing 273, 281–295 (2018)

    Google Scholar 

  11. Wang, Z.L., Wang, X.P., Zeng, Z.G.: Memristive circuit design of brain-inspired emotional evolution based on theories of internal regulation and external stimulation. Ieee Trans. Biomed. Circuits Syst. 15(6), 1380–1392 (2021)

    Google Scholar 

  12. Pu, Y.F., Yu, B., He, Q.Y., Yuan, X.: Fracmemristor oscillator: fractional-order memristive chaotic circuit. Ieee Trans. Circuits Syst. I-Regular Papers 69(12), 5219–5232 (2022)

    Google Scholar 

  13. Du, C.H., Liu, L.C., Shi, S.S., Wei, Y.: Multiple transient transitions behavior analysis of a double memristor’s hidden system and its circuit. Ieee Access 8, 76642–76656 (2020)

    Google Scholar 

  14. Silva, F., Sanz, M., Seixas, J., Solano, E., Omar, Y.: Perceptrons from memristors. Neural Netw. 122, 273–278 (2020)

    Google Scholar 

  15. Bao, G., Zhang, Y.D., Zeng, Z.G.: Memory analysis for memristors and memristive recurrent neural networks. Ieee-Caa J. Autom. Sinica 7(1), 96–105 (2020)

    Google Scholar 

  16. Bao, G., Zeng, Z.G.: Multistability of periodic delayed recurrent neural network with memristors. Neural Comput. Appl. 23(7–8), 1963–1967 (2013)

    Google Scholar 

  17. Ren, G.D., Xu, Y., Wang, C.N.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88(2), 893–901 (2017)

    Google Scholar 

  18. Markovic, D.: Synchronization by memristors. Nat. Mater. 21(1), 4–5 (2022)

    Google Scholar 

  19. Ye, X.L., Wang, X.Y., Gao, S., Mou, J., Wang, Z.S., Yang, F.F.: A new chaotic circuit with multiple memristors and its application in image encryption. Nonlinear Dyn. 99(2), 1489–1506 (2020)

    Google Scholar 

  20. Sun, J.Y., Li, C.B., Lu, T.A., Akgul, A., Min, F.H.: A memristive chaotic system with hypermultistability and its application in image encryption. Ieee Access 8, 139289–139298 (2020)

    Google Scholar 

  21. Lin, H.R., Wang, C.H., Cui, L., Sun, Y.C., Xu, C., Yu, F.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. Ieee Trans. Ind. Inf. 18(12), 8839–8850 (2022)

    Google Scholar 

  22. Leon, O.C.H.U.A.: Local activity is the origin of complexity. Int. J. Bifurcat. Chaos 15(11), 3435–3456 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Chua, Leon: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014)

    Google Scholar 

  24. Chua, Leon Ong: Everything you wish to know about memristors but are afraid to ask. In Handbook of Memristor Networks, (2019)

  25. Chua, L.: Five non-volatile memristor enigmas solved. Appl. Phys. A 124(8), 563 (2018)

    Google Scholar 

  26. Mannan, Zubaer Ibna, Choi, Hyuncheol, Kim, Hyongsuk: Chua corsage memristor oscillator via hopf bifurcation. Int. J. Bifurcat. Chaos 26(04), 1630009 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Kumar, Suhas, Strachan, John Paul, Williams, R Stanley: Chaotic dynamics in nanoscale nbo2 mott memristors for analogue computing. Nature 548(7667), 318–321 (2017)

    Google Scholar 

  28. Ma, Wen, Zidan, Mohammed A., Wei, DLu.: Neuromorphic computing with memristive devices. Sci. China Inf. Sci. 61(6), 060422 (2018)

    Google Scholar 

  29. Milo, V., Malavena, G., Monzio Compagnoni, C., Ielmini, D.: Memristive and cmos devices for neuromorphic computing. Materials (Basel) 13(1), (2020)

  30. Dong, Yujiao, Wang, Guangyi, Chen, Guanrong, Shen, Yiran, Ying, Jiajie: A bistable nonvolatile locally-active memristor and its complex dynamics. Commun. Nonlinear Sci. Numer. Simul. 84, 105203 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Li, Chunlai, Li, Haodong, Xie, Wenwu, Jianrong, Du.: A s-type bistable locally active memristor model and its analog implementation in an oscillator circuit. Nonlinear Dyn. 106(1), 1041–1058 (2021)

    Google Scholar 

  32. Ying, Jiajie, Liang, Yan, Wang, Junlan, Dong, Yujiao, Wang, Guangyi, Meiyuan, Gu.: A tristable locally-active memristor and its complex dynamics. Chaos, Solitons Fractals 148, 111038 (2021)

    MathSciNet  Google Scholar 

  33. Xie, Wenli, Wang, Chunhua, Lin, Hairong: A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Google Scholar 

  34. Li, Zhijun, Zhou, Haiyan, Wang, Mengjiao, Ma, Minglin: Coexisting firing patterns and phase synchronization in locally active memristor coupled neurons with hr and fn models. Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Google Scholar 

  35. Zhenzhou, Lu., Liang, Yan, Dong, Yujiao, Wang, Shichang: Spiking and chaotic behaviours of locally active memristor-based neuron circuit. Electron. Lett. 58(18), 681–683 (2022)

    Google Scholar 

  36. Jin, Peipei, Han, Ningna, Zhang, Xianfei, Wang, Guangyi, Chen, Long: Edge of chaos kernel and neuromorphic dynamics of a locally-active memristor. Commun. Nonlinear Sci. Numer. Simulat. 117, 106961 (2023)

    MathSciNet  MATH  Google Scholar 

  37. Corinto, Fernando, Ascoli, Alon, Gilli, Marco: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I Reg. Papers 58, 1323–1336 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Chua, Leon: Memristor, hodgkin-huxley, and edge of chaos. Nanotechnology 24(38), 383001 (2013)

    Google Scholar 

  39. Legenstein, Robert, Maass, Wolfgang: Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 20(3), 323–334 (2007)

    MATH  Google Scholar 

  40. Itoh, Makoto, Chua, Leon Ong: Chaotic oscillation via edge of chaos criteria. Int. J. Bifurc. Chaos 27, 1730035:1-1730035:79 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Kumar, Suhas, Williams, R Stanley, Wang, Ziwen: Third-order nanocircuit elements for neuromorphic engineering. Nature 585(7826), 518–523 (2020)

    Google Scholar 

  42. Yi, W., Tsang, K.K., Lam, S.K., Bai, X., Crowell, J.A., Flores, E.A.: Biological plausibility and stochasticity in scalable vo(2) active memristor neurons. Nat. Commun. 9(1), 4661 (2018)

    Google Scholar 

  43. Chua, Leon: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    MATH  Google Scholar 

  44. Yan, Shaohui, Yuyan Zhang, Yu., Ren, Xi Sun, Wang, Ertong, Song, Zhenlong: Four-dimensional hindmarsh-rose neuron model with hidden firing multistability based on two memristors. Physica Scripta 97(12), 125203 (2022)

    Google Scholar 

  45. Yan, Shaohui, Song, Zhenlong, Shi, Wanlin, Weilong Zhao, Yu., Ren, and Xi Sun.: A novel memristor-based dynamical system with chaotic attractor and periodic bursting. Int. J. Bifurcat. Chaos 32(04), 2250047 (2022)

  46. Apollos, Ezeogu Chinonso: Memristor theory and mathematical modelling. Int. J. Comput. Appl. (2019)

  47. Jin, P., Wang, G., Iu, H.H.C., Fernando, T.: A locally active memristor and its application in a chaotic circuit. IEEE Trans. Circuits Syst. II: Express Briefs 65(2), 246–250 (2018)

    Google Scholar 

  48. Wang, R.P., Yang, J.Q., Mao, J.Y., Wang, Z.P., Wu, S., Zhou, M.J., Chen, T.Y., Zhou, Y., Han, S.T.: Recent advances of volatile memristors: Devices, mechanisms, and applications. Adv. Intell. Syst. 2(9), (2020)

  49. Pershin, Y.V.: A demonstration of implication logic based on volatile (diffusive) memristors. Ieee Trans. Circuits Syst. Ii-Express Briefs 66(6), 1033–1037 (2019)

    Google Scholar 

  50. Lin, D.Y., Hui, S.Y.R., Chua, L.O.: Gas discharge lamps are volatile memristors. Ieee Trans. Circuits Syst. I-Regular Papers 61(7), 2066–2073 (2014)

    Google Scholar 

  51. Kim, D., Jeon, B., Lee, Y., Kim, D., Cho, Y., Kim, S.: Prospects and applications of volatile memristors. Appl. Phys. Lett. 121(1), (2022)

  52. Zhao, X.N., Xu, J.Q., Xie, D., Wang, Z.Q., Xu, H.Y., Lin, Y., Hu, J.L., Liu, Y.C.: Natural acidic polysaccharide-based memristors for transient electronics: Highly controllable quantized conductance for integrated memory and nonvolatile logic applications. Adv. Mater. 33(52), (2021)

  53. Ding, X.X., Huang, P., Zhao, Y.D., Feng, Y.L., Liu, L.F.: Understanding of the volatile and nonvolatile switching in ag-based memristors. Ieee Trans. Electron Dev. 69(3), 1034–1040 (2022)

    Google Scholar 

  54. Choi, S., Lee, H., Yun, H.J., Choi, B.J.: Algan-based ternary nitride memristors. Appl. Phys. Mater. Sci. Process. 127(9), (2021)

  55. Li, Z.J., Zhou, H., Wang, M.J., Ma, M.L.: A novel four-lobe corsage memristor with tristability and its complex dynamics. Eur. Phys. J. Special Topics 231(16–17), 3043–3058 (2022)

    Google Scholar 

  56. Li, R.H., Ding, R.H.: A novel locally active time-delay memristive hopfield neural network and its application. Eur. Phys. J. Special Topics 231(16–17), 3005–3017 (2022)

    Google Scholar 

  57. Zhou, Ling, You, Zhenzhen, Tang, Yun: A new chaotic system with nested coexisting multiple attractors and riddled basins. Chaos, Solitons Fractals 148, 111057 (2021)

    MathSciNet  MATH  Google Scholar 

  58. Ali, Ahsan, Iqbal, Sajid, Muqeet, Hafiz Abdul, Munir, Hafiz Mudassir, Bukhari, Syed Sabir Hussain., Ro, Jong-Suk., Akbar, Zeeshan: Application of 0–1 test for chaos on forward converter to study the nonlinear dynamics. Sci. Rep. 12(1), 15696 (2022)

    Google Scholar 

  59. Yan, Shaohui, Wang, Ertong, Wang, Qiyu, Sun, Xi., Ren, Yu.: Analysis, circuit implementation and synchronization control of a hyperchaotic system. Physica Scripta 96(12), 125257 (2021)

    Google Scholar 

  60. Yang, J., Hou, X.R., Li, Y.J.: A generalization of routh-hurwitz stability criterion for fractional-order systems with order alpha is an element of (1,2). Fractal Fract. 6(10), (2022)

  61. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. Rev. Sect. Phys. Lett. 540(4), 167–218 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Xu, T.Z., Xie, B., Liao, S.J.: On reliable computation of lifetime in transient chaos. Int. J. Bifurcat. Chaos 31(13), (2021)

  63. Sabarathinam, S., Thamilmaran, K., Borkowski, L., Perlikowski, P., Brzeski, P., Stefanski, A., Kapitaniak, T.: Transient chaos in two coupled, dissipatively perturbed hamiltonian duffing oscillators. Commun. Nonlinear Sci. Numer. Simulat. 18(11), 3098–3107 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Faradja, P., Qi, G.Y.: Analysis of multistability, hidden chaos and transient chaos in brushless dc motor. Chaos Solitons Fractals 132, (2020)

  65. Milton, John, Ohira, Toru: Transient dynamics. pp. 115–138, (2021)

  66. Neubert, Michael G., Caswell, Hal, Murray, J.D.: Transient dynamics and pattern formation: reactivity is necessary for turing instabilities. Math. Biosci. 175(1), 1–11 (2002)

    MathSciNet  MATH  Google Scholar 

  67. Perchikov, Nathan, Gendelman, O.V.: Transient dynamics in strongly nonlinear systems: optimization of initial conditions on the resonant manifold. Phil. Trans. Royal Soc. A Math. Phys. Eng. Sci. 376(2127), 20170131 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Mitra, Shirsendu, Basak, Mitali: Nonequilibrium dynamics of transient autoelectrophoresis and effect of surface heterogeneity. J. Phys. Chem. B 127(9), 2034–2043 (2023)

    Google Scholar 

  69. Liu, A., Magpantay, F.M.G.: A quantification of long transient dynamics. SIAM J. Appl. Math. 82(2), 381–407 (2022)

    MathSciNet  MATH  Google Scholar 

  70. Chen, Mo., Ren, Xue, Hua-Gan, Wu., Quan, Xu., Bao, Bo.-cheng: Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Fron. Inf. Technol. Electron. Eng. 20(12), 1706–1716 (2019)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaohui Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Zhang, Y., Ren, Y. et al. A new locally active memristor and its chaotic system with infinite nested coexisting attractors. Nonlinear Dyn 111, 17547–17560 (2023). https://doi.org/10.1007/s11071-023-08731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08731-0

Keywords

Navigation