Skip to main content
Log in

Instability of single- and double-periodic waves in the fourth-order nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we investigate the instability of single- and double-periodic waves of a fourth-order nonlinear Schrödinger equation, which describes the propagation of ultra-short pulses in a high-speed, long-distance optical fiber transmission system. The single- and double-periodic solutions of this fourth-order nonlinear Schrödinger equation are derived in terms of Jacobian elliptic functions such as dn, cn and sn. From the spectral problem, we compute Lax and stability spectrum for different values of elliptic modulus parameter. We then calculate the instability rate of single- and double-periodic waves for different values of elliptic modulus and system parameters. We also highlight certain novel features come out from our studies. In the case of single-periodic waves, the instability rate for the dn periodic wave is larger when compared to the cn periodic one. Also, our results reveal that the instability growth rate is higher for the single-periodic waves when compared to the double-periodic waves. Further, the width and height (maximal instability rate) of the instability rate of double-periodic waves increase when we increase the system parameter value. This, in effect, leads to faster evolution of the periodic waves (single and double) with a higher growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)

    Google Scholar 

  2. Maraver, J.C., Malomed, B.A., Kevrekidis, P.G., Frantzeskakis, D.J.: Stabilization of the Peregrine soliton and Kuznetsov-Ma breathers by means of nonlinearity and dispersion management. Phys. Lett. A 382, 968–972 (2018)

    MathSciNet  Google Scholar 

  3. Gelash, A.A.: Formation of rogue waves from a locally perturbed condensate. Phys. Rev. E 97, 022208 (2018)

    Google Scholar 

  4. Manikandan, K., Senthilvelan, M., Kraenkel, R.A.: Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein condensates. Eur. Phys. J. B 89, 30 (2016)

    MathSciNet  Google Scholar 

  5. Manikandan, K., Vishnu Priya, N., Senthilvelan, M., Sankaranarayanan, R.: Higher-order matter rogue waves and their deformations in two-component Bose-Einstein condensates. Waves Random Complex Media 32, 867–886 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Agafontsev, D.S., Zakharov, V.E.: Integrable turbulence generated from modulational instability of cnoidal waves. Nonlinearity 29, 3551–3578 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Randoux, S., Suret, P., Chabchoub, A., Kibler, B., El, G.: Nonlinear spectral analysis of Peregrine solitons observed in optics and in hydrodynamic experiments. Phys. Rev. E 98, 022219 (2018)

    Google Scholar 

  8. Wen, X.Y., Wang, D.S.: Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation. Wave Motion 79, 84–97 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, G., Yan, Z., Wen, X.Y.: Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations. Proc. R. Soc. A 473, 20170243 (2017)

    MATH  Google Scholar 

  10. Gelash, A., Agafontsev, D., Zakharov, V., El, G., Randoux, S., Suret, P.: Bound state soliton gas dynamics underlying the spontaneous modulational instability. Phys. Rev. Lett. 123, 234102 (2019)

    Google Scholar 

  11. Biondini, G., Mantzavinos, D.: Universal nature of the nonlinear stage of modulational instability. Phys. Rev. Lett. 116, 043902 (2016)

    MATH  Google Scholar 

  12. Kraych, A.E., Suret, P., El, G., Randoux, S.: Nonlinear evolution of the locally induced modulational instability in fiber optics. Phys. Rev. Lett. 122, 054101 (2019)

    Google Scholar 

  13. Kraych, A.E., Agafontsev, D., Randoux, S., Suret, P.: Statistical properties of the nonlinear stage of modulation instability in fiber optics. Phys. Rev. Lett. 123, 093902 (2019)

    Google Scholar 

  14. Hao, H.Q., Guo, R., Zhang, J.W.: Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrödinger equation. Nonlinear Dyn. 88, 1615–1622 (2017)

    MATH  Google Scholar 

  15. Sulaiman, T.A., Bulut, H.: Optical solitons and modulation instability analysis of the (1+ 1)-dimensional coupled nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 025003 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Tobisch, E., Pelinovsky, E.: Conditions for modulation instability in higher order Korteweg-de Vries equations. Appl. Math. Lett. 88, 28–32 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Liu, C., Yang, Z.Y., Yang, W.L.: Growth rate of modulation instability driven by superregular breathers. Chaos 28, 083110 (2018)

    MathSciNet  Google Scholar 

  18. Chen, J., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474, 20170814 (2018)

    MATH  Google Scholar 

  19. Sinthuja, N., Manikandan, K., Senthilvelan, M.: Rogue waves on an elliptic function background in complex modified Korteweg-de Vries equation. Phys. Scr. 96, 105206 (2021)

    MATH  Google Scholar 

  20. Choudhuri, A., Porsezian, K.: Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation. Phys. Rev. A 85, 033820 (2012)

    Google Scholar 

  21. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    MathSciNet  Google Scholar 

  22. Biondini, G., Li, S., Mantzavinos, D., Trillo, S.: Universal behavior of modulationally unstable media. SIAM Rev. 60, 888–908 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Grinevich, P.G., Santini, P.M.: The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes. Russ. Math. Surv. 74, 211–263 (2019)

    MATH  Google Scholar 

  24. Bilman, D., Ling, L., Miller, P.D.: Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy. Duke Math. J. 169, 671–760 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Chen, J., Pelinovsky, D.E., White, R.E.: Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability. Physica D 405, 132378 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Xu, G., Chabchoub, A., Pelinovsky, D.E., Kibler, B.: Observation of modulation instability and rogue breathers on stationary periodic waves. Phys. Rev. Res. 2, 033528 (2020)

    Google Scholar 

  27. Deconick, B., Segal, B.L.: The stability spectrum for elliptic solutions to the focusing NLS equation. Phys. D 346, 1–19 (2017)

    MathSciNet  Google Scholar 

  28. Chen, J., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100, 052219 (2019)

    MathSciNet  Google Scholar 

  29. Pelinovsky, D.E.: Instability of double-periodic waves in the nonlinear Schrödinger equation. Front. Phys. 9, 599146 (2021)

    Google Scholar 

  30. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)

    Google Scholar 

  31. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    MathSciNet  Google Scholar 

  32. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Agrawal, G.P.: Nonlinear Fiber Optics. Springer, London (2019)

    MATH  Google Scholar 

  34. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    MathSciNet  Google Scholar 

  35. Ankiewicz, A., Soto-Crespo, J.M., Chowdury, M.A., Akhmediev, N.: Rogue waves in optical fibers in presence of third-order dispersion, self-steepening, and self-frequency shift. J. Opt. Soc. Am. B 30, 87–94 (2013)

    Google Scholar 

  36. Zhang, H.Q., Liu, R., Chen, F.: Rogue waves on the double-periodic background for a nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 111, 645–654 (2023)

    Google Scholar 

  37. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Yang, C., Liu, W., Zhou, Q., Mihalache, D., Malomed, B.A.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dyn. 95, 369–380 (2019)

    Google Scholar 

  39. Song, N., Xue, H., Zhao, X.: Nonlinear dynamics of rogue waves in a fifth-order nonlinear Schrödinger equation. IEEE Access 8, 9610–9618 (2020)

    Google Scholar 

  40. Kengne, E., Malomed, B.A., Liu, W.M.: Phase engineering of chirped rogue waves in Bose-Einstein condensates with a variable scattering length in an expulsive potential. Commun. Nonlinear Sci. Num. Sim. 103, 105983 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Kengne, E., Liu, W.M., Malomed, B.A.: Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates. Phys. Rep. 899, 1–62 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Ankiewicz, A., Akhmediev, N.: Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, J.H., Wang, L., Liu, C.: Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects. Proc. R. Soc. A 473, 20160681 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Chowdury, A., Ankiewicz, A., Akhmediev, N., Chang, W.: Modulation instability in higher-order nonlinear Schrödinger equations. Chaos 28, 123116 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Lakshmanan, M., Porsezian, K., Danial, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483 (1988)

    Google Scholar 

  46. Kano, T.: Normal form of nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 58, 4322 (1989)

    Google Scholar 

  47. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

  48. Chowdury, A., Krolikowski, W.: Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations. Phys. Rev. E 95, 062226 (2017)

    MathSciNet  Google Scholar 

  49. Sun, W.R., Tian, B., Zhen, H.L., Sun, Y.: Breathers and rogue waves of the fifth-order nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 81, 725–732 (2015)

  50. Yin, H.M., Tian, B., Zhang, C.R., Du, X.X., Zhao, X.C.: Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97, 843–852 (2019)

    MATH  Google Scholar 

  51. Feng, B., Liu, J., Niu, H., Zhang, B.: Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions. Nonlinear Anal. 96, 111791 (2020)

    MATH  Google Scholar 

  52. Sinthuja, N., Manikandan, K., Senthilvelan, M.: Formation of rogue waves on the periodic background in a fifth-order nonlinear Schrödinger equation. Phys. Lett. A 415, 127640 (2021)

    MATH  Google Scholar 

  53. Sinthuja, N., Manikandan, K., Senthilvelan, M.: Rogue waves on the double-periodic background in Hirota equation. Euro. Phys. J. Plus 136, 305 (2021)

    MATH  Google Scholar 

  54. Pelinovsky, D.E., White, R.E.: Localized structures on librational and rotational travelling waves in the sine-Gordon equation. Proc. R. Soc. A 476, 20200490 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Crabb, M., Akhmediev, N.: Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation. Phys. Rev. E 99, 052217 (2019)

    MATH  Google Scholar 

Download references

Funding

NS wishes to thank MoE-RUSA 2.0 Physical Sciences, Government of India, for sponsoring a Fellowship to carry out this work. SR acknowledges MoE-RUSA 2.0 Physical Sciences, Government of India, for providing financial support to achieve the research aim. MS acknowledges MoE-RUSA 2.0 Physical Sciences, Government of India, for sponsoring this research work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the research and to the writing up of the paper.

Corresponding author

Correspondence to M. Senthilvelan.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Ethics approval

This research did not involve human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinthuja, N., Rajasekar, S. & Senthilvelan, M. Instability of single- and double-periodic waves in the fourth-order nonlinear Schrödinger equation. Nonlinear Dyn 111, 16497–16513 (2023). https://doi.org/10.1007/s11071-023-08722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08722-1

Keywords

Navigation