Skip to main content
Log in

Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We obtain the nondegenerate one- and two-soliton solutions of the nonlocal nonlinear Schrödinger equation by using the nonstandard Hirota method. This unconventional method is used to bilinearize the nonlocal nonlinear Schrödinger equation and its related auxiliary equations, and some novel interaction properties of parity-time-symmetric two-soliton solutions are derived. The detailed asymptotic analysis is used to reveal the characteristics of energy conservation and energy redistribution before and after the collision between nondegenerate solitons. Experimental scheme to observe nondegenerate solitons is also proposed. This provides potential applications for the soliton interaction in the nonlocal wave model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ren, P., Rao, J.G.: Bright-dark solitons in the space-shifted nonlocal coupled nonlinear Schrodinger equation. Nonlinear Dyn. 108, 2461–2470 (2022)

    Google Scholar 

  2. Chen, X., Mihalache, D., Rao, J.G.: Dynamics of degenerate and nondegenerate solitons in the two-component nonlinear Schrodinger equations coupled to Boussinesq equation. Nonlinear Dyn. 111, 697–711 (2023)

    Google Scholar 

  3. Yang, J., Song, H.F., Fang, M.S., Ma, L.Y.: Solitons and rogue wave solutions of focusing and defocusing space shifted nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 107, 3767–3777 (2022)

    Google Scholar 

  4. Wazwaz, A., Abu Hammad, M.M., El-Tantawy, S.A.: Bright and dark optical solitons for (3 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  5. Zhang, S., Lan, P., Su, J.J.: Wave-packet behaviors of the defocusing nonlinear Schrodinger equation based on the modified physics-informed neural networks. Chaos 31, 113107 (2021)

    MathSciNet  Google Scholar 

  6. Sugati, T.G., Seadawy, A.R., Alharbey, R.A., Albarakati, W.: Nonlinear physical complex hirota dynamical system: construction of chirp free optical dromions and numerical wave solutions. Chaos Solitons Fractals. 156, 111788 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Wang, H.T., Li, X., Zhou, Q., Liu, W.J.: Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media. Chaos Solitons Fractals. 166, 112924 (2023)

    Google Scholar 

  8. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  9. Ma, G.L., Zhao, J.B., Zhou, Q., Biswas, A., Liu, W.J.: Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrödinger equation. Nonlinear Dyn. 106, 2479–2484 (2021)

    Google Scholar 

  10. Chakraborty, S., Nandy, S., Barthakur, A.: Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions. Phys. Rev. E. 91, 023210 (2015)

    MathSciNet  Google Scholar 

  11. Triki, H., Porsezian, K., Senthilnathan, K., Nithyanandan, K.: Chirped self-similar solitary waves for the generalized nonlinear Schrödinger equation with distributed two-power-law nonlinearities. Phys. Rev. E. 100, 042208 (2019)

    MathSciNet  Google Scholar 

  12. Adhikari, S.K.: Bright solitons in coupled defocusing NLS equation supported by coupling: application to Bose-Einstein condensation. Phys. Lett. A. 346, 179–185 (2005)

    MATH  Google Scholar 

  13. Chen, J.B., Pelinovsky, D.E.: Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. Phys. Rev. E. 103, 062206 (2021)

    Google Scholar 

  14. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  15. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E. 91, 033202 (2015)

    MathSciNet  Google Scholar 

  16. Yang, J.K.: Physically significant nonlocal nonlinear Schrödinger equation and its soliton solutions. Phys. Rev. E. 98, 042202 (2018)

    MathSciNet  Google Scholar 

  17. Rao, J.G., He, J.S., Kanna, T., Mihalache, D.: Nonlocal M-component nonlinear Schrödinger equations: bright solitons, energy-sharing collisions, and positons. Phys. Rev. E. 102, 032201 (2020)

    MathSciNet  Google Scholar 

  18. Su, J.J., Ruan, B.: N-fold binary Darboux transformation for the nth-order Ablowitz-Kaup-Newell-Segur system under a pseudo-symmetry hypothesis. Appl Math Lett. 125, 107719 (2022)

    MATH  Google Scholar 

  19. Shi, X.J., Li, J., Wu, C.F.: Dynamics of soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation. Chaos 29, 023120 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Su, J.J., Zhang, S., Ding, C.C.: Spatiotemporal distortion effects and interaction properties for certain nonlinear waves of the generalized AB system. Nonlinear Dyn. 106, 2415–2429 (2021)

    Google Scholar 

  21. Su, J.J., Zhang, S.: Nth-order rogue waves for the AB system via the determinants. Appl. Math. Lett. 112, 106714 (2021)

    MATH  Google Scholar 

  22. Stalin, S., Ramakrishnan, R., Senthilvelan, M., Lakshmanan, M.: Nondegenerate Solitons in Manakov System. Phys. Rev. Lett. 122, 043901 (2019)

    Google Scholar 

  23. Cai, Y.J., Wu, J.W., Lin, J.: Nondegenerate N-soliton solutions for Manakov system. Chaos Solitons Fractals. 164, 112657 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Stalin, S., Ramakrishnan, R., Lakshmanan, M.: Nondegenerate bright solitons in coupled nonlinear Schrödinger systems: recent developments on optical vector solitons. Photonics. 8, 258 (2021)

    MATH  Google Scholar 

  25. Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dyn. 111, 603–617 (2023)

    Google Scholar 

  26. Kheruntsyan, K.V., Drummond, P.D.: Multidimensional quantum solitons with nondegenerate parametric interactions: photonic and bose-einstein condensate environments. Phys. Rev. A. 61, 063816 (2000)

    MathSciNet  Google Scholar 

  27. Ostrovskaya, E.A., Kivshar, Y.S., Skryabin, D.V., Firth, W.J.: Stability of multihump optical solitons. Phys. Rev. Lett. 83, 296 (1999)

    MATH  Google Scholar 

  28. Yan, Y.Y., Liu, W.J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic ginzburg-landau equation. Chin. Phys. Lett. 38, 094201 (2021)

    Google Scholar 

  29. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  30. Sabirov, K.K., Yusupov, J.R., Aripov, M.M., Ehrhardt, M., Matrasulov, D.U.: Reflectionless propagation of Manakov solitons on a line: a model based on the concept of transparent boundary conditions. Phys. Rev. E. 103, 043305 (2021)

    MathSciNet  Google Scholar 

  31. Vijayajayanthi, M., Kanna, T., Murali, K., Lakshmanan, M.: Harnessing energy-sharing collisions of Manakov solitons to implement universal NOR and OR logic gates. Phys. Rev. E. 97, 060201 (2018)

    Google Scholar 

  32. Rodrigues, J.D., Mendonça, J.T., Terças, H.: Turbulence excitation in counterstreaming paraxial superfluids of light. Phys. Rev. A. 101, 043810 (2020)

    Google Scholar 

  33. Watanabe, G., Zhang, Y.P.: Stabilization of nonlinear lattices: a route to superfluidity and hysteresis. Phys Rev A. 98, 013625 (2018)

    Google Scholar 

  34. Forest, M.G., McLaughlin, D.W., Muraki, D.J., Wright, O.C.: Nonfocusing instabilities in coupled, integrable nonlinear Schrödinger pdes. J. Nonlinear Sci. 10, 291–331 (2000)

    MathSciNet  MATH  Google Scholar 

  35. Ling, L., Zhao, L.C., Guo, B.: Darboux transformation and multi-dark soliton for N-component nonlinear Schrödinger equations. Nonlinearity 28, 3243 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Lou, S.Y.: Multi-place physics and multi-place nonlocal systems. Commun. Theor. Phys. 72, 057001 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Solitons Fractals. 142, 110363 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Yu, F.J., Liu, C.P., Li, L.: Broken and unbroken solutions and dynamic behaviors for the mixed local–nonlocal Schrödinger equation. Appl. Math. Lett. 117, 107075 (2021)

    MATH  Google Scholar 

  39. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Energy-sharing collisions and the dynamics of degenerate solitons in the nonlocal Manakov system. Nonlinear Dyn. 95, 1767–1780 (2019)

    MATH  Google Scholar 

  40. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Degenerate soliton solutions and their dynamics in the nonlocal Manakov system: I symmetry preserving and symmetry breaking solutions. Nonlinear Dyn. 95, 343–360 (2019)

    MATH  Google Scholar 

  41. Ramakrishnan, R., Stalin, S., Lakshmanan, M.: Nondegenerate solitons and their collisions in Manakov systems. Phys. Rev. E. 102, 042212 (2020)

    MathSciNet  Google Scholar 

  42. Anastassiou, C., Segev, M., Steiglitz, K., Giordmaine, J., Mitchell, M., Shih, M.F., Lan, S.: Energy-exchange interactions between colliding vector solitons. Phys. Rev. Lett. 83, 2332 (1999)

    Google Scholar 

  43. Mitchell, M., Segev, M., Christodoulides, D.N.: Observation of multihump multimode solitons. Phys. Rev. Lett. 80, 4657 (1998)

    MATH  Google Scholar 

  44. Stratmann, M., Pagel, T., Mitschke, F.: Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005)

    Google Scholar 

  45. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

Download references

Funding

Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001); National Natural Science Foundation of China (Grant Nos. 12261131495, 12075210 and 12275240) and the Scientific Research and Developed Fund of Zhejiang A&F University (Grant No. 2021FR0009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao-Qing Dai or Yue-Yue Wang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix parameters in solutions (9) and (11)

Appendix parameters in solutions (9) and (11)

1.1 I. Parameters in solution (9)

$$ \eta_{j} = i\kappa_{j} x + i\kappa_{j}^{2} t,\overline{\eta }_{j} = i\overline{\kappa }_{j} x - i\overline{\kappa }_{j}^{2} t,\xi_{j} = i\iota_{j} x + i\iota_{j}^{2} t,\overline{\xi }_{j} = i\overline{\iota }_{j} x - i\overline{\iota }_{j}^{2} t $$
$$ \begin{gathered} \eta_{jR} = - \kappa_{jI} (x + 2\kappa_{jR} t),\eta_{jI} = \kappa_{jR} x + (\kappa_{jR}^{2} - \kappa_{jI}^{2} )t,\xi_{jR} = - \iota_{jI} (x + 2\iota_{jR} t),\xi_{jI} = \iota_{jR} x + (\iota_{jR}^{2} - \iota_{jI}^{2} )t, \hfill \\ A_{1}^{1} = \frac{{\sigma \alpha_{1} \alpha_{2} \overline{\alpha }_{2} ( - \overline{\iota }_{1} - 2\kappa_{1} + \iota_{1} )}}{{(\kappa_{1} + \overline{\iota }_{1} )(\overline{\iota }_{1} + \iota_{1} )^{2} }},A_{{_{1} }}^{2} = \frac{{\sigma \alpha_{1} \alpha_{2} \overline{\alpha }_{1} ( - \overline{\kappa }_{1} - 2\iota_{1} + \kappa_{1} )}}{{(\overline{\kappa }_{1} + \iota_{1} )(\overline{\kappa }_{1} + \kappa_{1} )^{2} }},B_{{_{1} }}^{j} = - \frac{{2\sigma \alpha_{1} \overline{\alpha }_{1} }}{{(\overline{\kappa }_{1} + \kappa_{1} )^{2} }},B_{{_{2} }}^{j} = - \frac{{2\sigma \alpha_{2} \overline{\alpha }_{2} }}{{(\overline{\iota }_{1} + \iota_{1} )^{2} }}, \hfill \\ \end{gathered} $$
$$ \begin{gathered} C_{1}^{1} = \frac{{ - B_{{_{2} }}^{1} B_{{_{1} }}^{1} (\overline{\kappa }_{1} + \kappa_{1} - \overline{\iota }_{1} - \iota_{1} )^{2} - 2(A_{1}^{1} \overline{\alpha }_{1} + A_{{_{1} }}^{2} \overline{\alpha }_{2} + \overline{A}_{1}^{1} \alpha_{1} )}}{{(\overline{\kappa }_{1} + \kappa_{1} + \overline{\iota }_{1} + \iota_{1} )^{2} }},N_{m}^{n} { = } - \frac{{2\sigma \alpha_{mn} \overline{\alpha }_{mn} }}{{(\overline{\kappa }_{n} + \kappa_{m} )^{2} }}{\text{,P}}_{m}^{n} = - \frac{{2\sigma \alpha_{mn} \overline{\alpha }_{mn} }}{{(\overline{\iota }_{n} + \iota_{m} )^{2} }} \hfill \\ C_{{_{1} }}^{2} = \frac{{ - \overline{B}_{{_{2} }}^{1} \overline{B}_{{_{1} }}^{1} (\overline{\kappa }_{1} + \kappa_{1} - \overline{\iota }_{1} - \iota_{1} )^{2} - 2\sigma (A_{1}^{1} \overline{\alpha }_{1} + A_{{_{1} }}^{2} \overline{\alpha }_{2} + \overline{A}_{1}^{1} \alpha_{1} + \overline{A}_{{_{1} }}^{2} \alpha_{2} )}}{{(\overline{\kappa }_{1} + \kappa_{1} + \overline{\iota }_{1} + \iota_{1} )^{2} }}, \hfill \\ \end{gathered} $$

1.2 II. Parameters in solution (11)

$$ \begin{gathered} D_{m}^{n(p)} = \frac{{\sigma ( - 2\kappa_{1n} - \overline{\kappa }_{2p} + \kappa_{2m} )\alpha_{m2} \alpha_{n1} \alpha_{p20} }}{{(\kappa_{2m} + \overline{\kappa }_{2p} )^{2} (\kappa_{1n} + \overline{\kappa }_{2p} )}},d_{m}^{n\left( p \right)} = \frac{{\sigma ( - 2\kappa_{2n} - \overline{\kappa }_{1p} + \kappa_{1m} )\alpha_{m1} \alpha_{n2} \overline{\alpha }_{p1} }}{{(\kappa_{1m} + \overline{\kappa }_{1p} )^{2} (\kappa_{2n} + \overline{\kappa }_{1p} )}} \hfill \\ E_{m}^{n} = - \frac{{2\sigma \alpha_{2n} \alpha_{1n} \overline{\alpha }_{mn} [(\kappa_{n1} + \kappa_{n2} + \overline{\kappa }_{nm} )\overline{\kappa }_{nm} + \kappa_{n1}^{2} + \kappa_{n2}^{2} - \kappa_{n1} \kappa_{n2} ]}}{{(\kappa_{n2} + \overline{\kappa }_{nm} )^{2} (\overline{\kappa }_{nm} + \kappa_{n1} )^{2} }} \hfill \\ \end{gathered} $$
$$ \begin{gathered} F_{1M2N}^{mn} = - \frac{1}{{(\kappa_{1M} + \kappa_{2N} + \overline{\kappa }_{1m} + \overline{\kappa }_{2n} )}}(\sigma d_{M}^{M(m)} d_{N}^{P(N)} (\kappa_{1M} - \kappa_{2N} + \overline{\kappa }_{1m} - \overline{\kappa }_{2n} )^{2} + F + \overline{F}), \hfill \\ F_{n} = - \frac{1}{{(F_{3} + \overline{F}_{3} )}}(\sigma d_{1}^{n(1)} d_{1}^{n(2)} (\kappa_{n1} - \kappa_{n2} + \overline{\kappa }_{n1} - \overline{\kappa }_{n2} )^{2} + F_{4} + \overline{F}_{4} ),F = 2E_{1}^{n} \overline{\alpha }_{2n} + 2E_{2}^{n} \overline{\alpha }_{1n} , \hfill \\ P \ne N,F_{3} = \kappa_{n1} + \kappa_{n2} ,F_{4} = 2D_{N}^{M(n)} \overline{\alpha }_{m1} + 2d_{M}^{N(m)} \overline{\alpha }_{n2} . \hfill \\ \end{gathered} $$
$$ \begin{gathered} J_{1M2m}^{mn} = \frac{1}{{2[(J_{1}^{ + } + \kappa_{2n} + \overline{\kappa }_{1M} )\overline{\kappa }_{1M} + (J_{1}^{ + } + J_{2}^{2 + } + \overline{\kappa }_{1M} )\overline{\kappa }_{2m} + J_{1}^{ + } \kappa_{2n} + \kappa_{11} \kappa_{12} ]}}\sum\limits_{p = 1}^{2} { - 2\{ [J_{2}^{1 + } + ( - 1)^{p - 1} J_{1}^{ - } ]\overline{\kappa }_{2m} + [\kappa_{2n} + ( - 1)^{p - 1} J_{1}^{ - } ]\overline{\kappa }_{1M} } \hfill \\ + \kappa_{2n}^{2} + ( - 1)^{p - 1} J_{1}^{ - } (\kappa_{11} + \kappa_{2n} )\} \alpha_{q1} F_{1p2n}^{Mm} - \sigma^{2} X\sum\limits_{p = 1}^{2} {d_{p}^{p(M)} \alpha_{P1} [(\kappa_{1Q} + \overline{\kappa }_{1M} )^{2} + (J_{2}^{2 + } )^{2} ] - 2\sigma \{ D[ - \frac{1}{2}\overline{\kappa }_{1M}^{2} - \kappa_{11} \kappa_{12} + J_{2}^{2 + } (J_{1}^{ - } + \overline{\kappa }_{2m} - } \hfill \\ \overline{\kappa }_{1M} )] + [(J_{1}^{ + } - J_{2}^{2 + } + \overline{\kappa }_{1M} )\overline{\kappa }_{1M} - (J_{1}^{ + } + \frac{{\overline{\kappa }_{2m} }}{2})\overline{\kappa }_{2m} + (\kappa_{12} - \kappa_{2n} )\kappa_{11} - (\kappa_{12} - \frac{{\kappa_{2n} }}{2})\kappa_{2n} ]E_{M}^{1} X + \frac{1}{2}\sum\limits_{p = 1}^{2} {D_{n}^{P(m)} d_{p}^{p(M)} (\kappa_{1Q}^{2} - 2\kappa_{1P} \overline{\kappa }_{NM} ) + 2} \hfill \\ \overline{D}_{m}^{M(n)} \alpha_{21} \alpha_{11} + \sum\limits_{p = 1}^{2} {D_{n}^{p(m)} \overline{\alpha }_{M1} + \overline{d}_{M}^{m(p)} \alpha_{n2} + d_{p}^{n(M)} \overline{\alpha }_{m2} )\alpha_{q1} \} ,J_{1}^{ \pm } = \kappa_{11} \pm \kappa_{12} ,J_{2}^{p + } = \kappa_{2n} + \overline{\kappa }_{pm} } . \hfill \\ \end{gathered} $$
$$ \begin{gathered} j_{1M2m}^{mn} = \frac{1}{{2[(j_{1}^{ + } + \kappa_{2n} + \overline{\kappa }_{1M} )\overline{\kappa }_{1M} + (j_{1}^{ + } + j_{2}^{2 + } + \overline{\kappa }_{1M} )\overline{\kappa }_{2m} + j_{1}^{ + } \kappa_{2n} + \kappa_{11} \kappa_{12} ]}}\sum\limits_{p = 1}^{2} { - 2\{ [j_{2}^{1 + } + ( - 1)^{p - 1} j_{1}^{ - } ]\overline{\kappa }_{2m} + [\kappa_{2n} + ( - 1)^{p - 1} j_{1}^{ - } ]\overline{\kappa }_{1M} } \hfill \\ + \kappa_{2n}^{2} + ( - 1)^{p - 1} j_{1}^{ - } (\kappa_{11} + \kappa_{2n} )\} \alpha_{q1} F_{1p2n}^{Mm} - \sigma^{2} X\sum\limits_{p = 1}^{2} {d_{p}^{p(M)} \alpha_{P1} [(\kappa_{1Q} + \overline{\kappa }_{1M} )^{2} + (j_{2}^{2 + } )^{2} ] - 2\sigma \{ D[ - \frac{1}{2}\overline{\kappa }_{1M}^{2} - \kappa_{11} \kappa_{12} + j_{2}^{2 + } (j_{1}^{ - } + \overline{\kappa }_{2m} - } \hfill \\ \overline{\kappa }_{1M} )] + [(j_{1}^{ + } - j_{2}^{2 + } + \overline{\kappa }_{1M} )\overline{\kappa }_{1M} - (j_{1}^{ + } + \frac{{\overline{\kappa }_{2m} }}{2})\overline{\kappa }_{2m} + (\kappa_{12} - \kappa_{2n} )\kappa_{11} - (\kappa_{12} - \frac{{\kappa_{2n} }}{2})\kappa_{2n} ]E_{M}^{2} X + \frac{1}{2}\sum\limits_{p = 1}^{2} {d_{n}^{P(m)} D_{p}^{p(M)} (\kappa_{1Q}^{2} - 2\kappa_{1P} \overline{\kappa }_{NM} ) + 2} \hfill \\ \overline{d}_{m}^{M(n)} \alpha_{21} \alpha_{11} + \sum\limits_{p = 1}^{2} {d_{n}^{p(m)} \overline{\alpha }_{M1} + \overline{D}_{M}^{m(p)} \alpha_{n2} + D_{p}^{n(M)} \overline{\alpha }_{m2} )\alpha_{q1} \} ,j_{1}^{ \pm } = \kappa_{11} \pm \kappa_{12} ,j_{2}^{p + } = \kappa_{2n} + \overline{\kappa }_{pm} } . \hfill \\ \end{gathered} $$
$$ D = D_{n}^{M(m)} d_{2}^{2(M)} + D_{n}^{N(m)} d_{1}^{1(M)} ,P = \left\{ {\begin{array}{*{20}c} {M,p = 2} \\ {N,p = 1} \\ \end{array} } \right.,Q \ne P,p \ne q,X = \left\{ {\begin{array}{*{20}c} {d121,m = 1,n = 1} \\ {d212,m = 1,n = 2} \\ \end{array} } \right.o{\text{r }}X = \left\{ {\begin{array}{*{20}c} {d211,m = 2,n = 1} \\ {d122,m = 2,n = 2} \\ \end{array} } \right.. $$
$$ \begin{gathered} H_{mn}^{1} = - \frac{1}{{(\kappa_{11} + \kappa_{12} + \kappa_{2m} + \kappa_{110} + \kappa_{120} + \kappa_{2n0} )}}(\sigma \{ F1[X( - \kappa_{11} - \kappa_{12} + \kappa_{2m} - \kappa_{110} - \kappa_{120} + \kappa_{2n0} )^{2} + 2\alpha_{m2} \overline{\alpha }_{n2} ] + F_{1q2m}^{Nn} \hfill \\ [d_{p}^{p(M)} (\kappa_{11} - \kappa_{12} - ( - 1)^{q} \kappa_{2m} + ( - 1)^{N} (\kappa_{110} - \kappa_{120} ) - ( - 1)^{q} \kappa_{2n0} )^{2} + 2\alpha_{p1} \overline{\alpha }_{M1} ] + Y + \overline{Y} + 2d_{2}^{1(1)} \overline{d}_{2}^{1(1)} + 2d_{1}^{1(2)} \overline{d}_{1}^{1(2)} \} ), \hfill \\ Y = 2\alpha_{12} \overline{j}_{2122}^{1} + 2(\sum\limits_{M = 1}^{2} {} \alpha_{m1} \overline{J}_{1N21}^{11} + \overline{D}_{1}^{M(1)} E_{N}^{1} ) + 2d_{2}^{1(2)} \overline{d}_{1}^{1(1)} ,M \ne N,p \ne q. \hfill \\ \end{gathered} $$
$$ \begin{gathered} H_{mn}^{2} = - \frac{1}{{(\kappa_{21} + \kappa_{1n} + \kappa_{22} + \kappa_{1m0} + \kappa_{210} + \kappa_{220} )}}(\sigma \{ F2[X( - \kappa_{1n} + \kappa_{21} + \kappa_{22} - \kappa_{1m0} + \kappa_{210} + \kappa_{220} )^{2} + 2\alpha_{n1} \overline{\alpha }_{m1} ] + F_{1q2m}^{Nn} \hfill \\ [X(\kappa_{11} - \kappa_{21} - ( - 1)^{q} \kappa_{1n} + ( - 1)^{N} (\kappa_{210} - \kappa_{220} ) - ( - 1)^{q} \kappa_{1m0} )^{2} + 2\alpha_{p2} \overline{\alpha }_{M2} ] + y + \overline{y} + 2D_{2}^{1(1)} \overline{D}_{2}^{1(1)} + 2D_{1}^{1(2)} \overline{D}_{1}^{1(2)} \} ), \hfill \\ y = 2\alpha_{11} \overline{J}_{2122}^{1} + 2(\sum\limits_{M = 1}^{2} {} \alpha_{m2} \overline{j}_{1N21}^{11} + \overline{d}_{1}^{M(1)} E_{N}^{2} ) + 2D_{2}^{1(2)} \overline{D}_{1}^{1(1)} ,M \ne N,p \ne q. \hfill \\ \end{gathered} $$

\(\begin{gathered} K_{m} = \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} F_{11}^{2n(1m)} \{ - 2d_{m}^{p(q)} \alpha_{21} (k_{2q} + \overline{k}_{2p} )(k_{11} + \overline{k}_{11} + k_{2n} + \overline{k}_{2m} )\sigma - D_{q}^{2(p)} [2(K_{2} - \overline{k}_{11} - \overline{k}_{2m} + \overline{k}_{2p} )\overline{k}_{2p} + 2(K_{2} - \overline{k}_{11} - \overline{k}_{2m} )k_{12} + \hfill \\ 2( - k_{11} - k_{2n} - \overline{k}_{11} - \overline{k}_{2m} )k_{2q} + k_{11}^{2} + k_{2n}^{2} - \overline{k}_{11}^{2} - \overline{k}_{2m}^{2} ]\} + \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} F_{12}^{2n(1m)} \{ - 2d_{m}^{p(q)} \alpha_{11} (k_{2q} + \overline{k}_{2p} )(k_{12} + \overline{k}_{11} + k_{2n} + \overline{k}_{2m} )\sigma - D_{q}^{1(p)} [(K_{2} \hfill \\ + \overline{k}_{11} + \overline{k}_{2m} - \overline{k}_{2p} )\overline{k}_{2p} + (k_{12} + k_{21} - k_{22} + \overline{k}_{11} + \overline{k}_{2m} )k_{11} + (k_{12} + k_{2n} + \overline{k}_{11} + \overline{k}_{2m} )k_{2q} + \frac{1}{2}( - k_{12}^{2} - k_{2n}^{2} + \overline{k}_{11}^{2} + \overline{k}_{2m}^{2} )]\} + \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} - 2XJ_{11}^{2q(qp)} \hfill \\ \sigma [(K_{2} + \overline{k}_{11} + \overline{k}_{21} - \overline{k}_{22} )\overline{k}_{2p} + ( - k_{11} - k_{12} - k_{2p} - \overline{k}_{11} )\overline{k}_{2n} + K_{1} \overline{k}_{11} + (k_{11} + k_{12} - k_{22} )k_{21} - (k_{11} + k_{12} )k_{22} + k_{11} k_{12} + \frac{1}{2}(k_{2m}^{2} - \overline{k}_{22}^{2} + 2\overline{k}_{11}^{2} )] \hfill \\ /2[(K_{1} + \overline{k}_{11} + \overline{k}_{21} + \overline{k}_{q1}^{2} + \overline{k}_{22} )\overline{k}_{q1} + (K_{1} + \overline{k}_{nm} + \overline{k}_{q2} )\overline{k}_{q2} + (K_{1} + \overline{k}_{nm} )\overline{k}_{nm} + (k_{1n} + k_{12} + k_{22} )k_{q1} + (k_{n1} + k_{n2} )k_{q2} + k_{n1} k_{n2} ], \hfill \\ \end{gathered}\) \(\begin{gathered} M = \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} - [(k_{11} + k_{12} - k_{21} + k_{22} + \overline{k}_{11} + \overline{k}_{12} + \overline{k}_{21} - \overline{k}_{22} )^{2} d_{q}^{n(m)} + 2\alpha_{np} \overline{\alpha }_{qp} ]\sigma H_{q}^{n(m)} - (k_{11} + k_{12} - k_{21} - k_{22} + \overline{k}_{11} + \overline{k}_{12} - \overline{k}_{21} - \overline{k}_{22} )^{2} F_{1} F_{2} \hfill \\ - 2\sum\limits_{\begin{subarray}{l} m,n,p \\ q,M,N = 1 \end{subarray} }^{2} {} [( - \alpha_{11} d_{n}^{q(M)} \overline{\alpha }_{m1} - \alpha_{M2} d_{n}^{n(n)} \overline{\alpha }_{n2} ) + M_{1} + \overline{M}_{1} ]\sigma F_{12}^{2N(pq)} - 2\sigma [\sum\limits_{\begin{subarray}{l} m,n,p \\ q,M,N = 1 \end{subarray} }^{2} {} (M_{2} + \overline{M}_{2} )] - (k_{11} - k_{12} + k_{21} - k_{22} + \overline{k}_{11} - \overline{k}_{12} + \overline{k}_{21} - \overline{k}_{22} )^{2} F_{12}^{2N(pq)} \hfill \\ - 2\sigma [( - \alpha_{NM} d_{n}^{q(2)} \overline{\alpha }_{pM} - \alpha_{2P} d_{m}^{m(p)} \overline{\alpha }_{qp} )\sigma + M_{3} + \overline{M}_{3} ]F_{11}^{2M(mn)} ,M_{1} = D_{M}^{1(n)} \overline{\alpha }_{m1} + d_{1}^{M(m)} \overline{\alpha }_{n2} ,M_{2} = D_{m}^{n(M)} \overline{J}_{1q}^{2p(pN)} + d_{m}^{n(M)} \overline{j}_{1q}^{2p(pN)} + \overline{E}_{m}^{n} \overline{J}_{21}^{22(p)} . \hfill \\ M_{3} = D_{N}^{2(q)} \overline{\alpha }_{p1} + d_{N}^{N(p)} \overline{\alpha }_{q2} . \hfill \\ \end{gathered}\) \(\begin{gathered} L_{m} = \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} F_{11}^{2n(1m)} \{ - 2d_{m}^{p(q)} \alpha_{21} (k_{2q} + \overline{k}_{2p} )(k_{11} + \overline{k}_{11} + k_{2n} + \overline{k}_{2m} )\sigma - d_{q}^{2(p)} [2(K_{2} - \overline{k}_{11} - \overline{k}_{2m} + \overline{k}_{2p} )\overline{k}_{2p} + 2( - k_{11} - k_{21} + k_{22} - \overline{k}_{11} - \overline{k}_{2m} )k_{12} \hfill \\ + 2( - k_{11} - k_{2n} - \overline{k}_{11} - \overline{k}_{2m} )k_{2q} + k_{11}^{2} + k_{2n}^{2} - \overline{k}_{11}^{2} - \overline{k}_{2m}^{2} ]\} + \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} F_{12}^{2n(1m)} \{ - 2d_{m}^{p(q)} \alpha_{11} (k_{2q} + \overline{k}_{2p} )(k_{12} + \overline{k}_{11} + k_{2n} + \overline{k}_{2m} )\sigma - d_{q}^{1(p)} [(K_{1} + \overline{k}_{11} + \hfill \\ \overline{k}_{2m} - \overline{k}_{2p} )\overline{k}_{2p} + (k_{12} + k_{21} - k_{22} + \overline{k}_{11} + \overline{k}_{2m} )k_{11} + (k_{12} + k_{2n} + \overline{k}_{11} + \overline{k}_{2m} )k_{2q} + \frac{1}{2}( - k_{12}^{2} - k_{2n}^{2} + \overline{k}_{11}^{2} + \overline{k}_{2m}^{2} )]\} + \sum\limits_{\begin{subarray}{l} m,n, \\ p,q = 1 \end{subarray} }^{2} {} - 2Xj_{11}^{2q(qp)} \sigma [(K_{1} + \overline{k}_{11} + \hfill \\ \overline{k}_{21} - \overline{k}_{22} )\overline{k}_{2p} + ( - k_{11} - k_{12} - k_{2p} - \overline{k}_{11} )\overline{k}_{2n} + L_{1} \overline{k}_{11} + (k_{11} + k_{12} - k_{22} )k_{21} - (k_{11} + k_{12} )k_{22} + k_{11} k_{12} + \frac{1}{2}(k_{2m}^{2} - \overline{k}_{22}^{2} + 2\overline{k}_{11}^{2} )]/2[(K_{1} + \overline{k}_{11} + \overline{k}_{21} + \hfill \\ \overline{k}_{q1}^{2} + \overline{k}_{22} )\overline{k}_{q1} + (K_{1} + \overline{k}_{nm} + \overline{k}_{q2} )\overline{k}_{q2} + (K_{1} + \overline{k}_{nm} )\overline{k}_{nm} + (k_{1n} + k_{12} + k_{22} )k_{q1} + (k_{n1} + k_{n2} )k_{q2} + k_{n1} k_{n2} ],m \ne n,p \ne q,K_{1} = k_{11} + k_{12} + k_{21} + k_{22} , \hfill \\ K_{2} = - k_{11} + k_{12} + k_{21} - k_{22} . \hfill \\ \end{gathered}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, KL., Zhu, BW., Cao, QH. et al. Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn 111, 16483–16496 (2023). https://doi.org/10.1007/s11071-023-08719-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08719-w

Keywords

Navigation