Skip to main content
Log in

Mix-training physics-informed neural networks for high-order rogue waves of cmKdV equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, a neural networks method: physics-informed neural networks (PINNs) is proposed to solve nonlinear partial differential equations (NPDEs); this method obtained the predicted solution by minimizing the sum of mean square of initial error, boundary error and residual of equation. It provides a new approach for solving NPDEs by neural networks. The complex modified Korteweg–de Vries (cmKdV) equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas. However, due to its complexity, it is difficult to solve the high-order rogue waves of them by PINNs, so how to solve the high-order rogue waves of complex equation by neural networks method has become a hot research direction. In this paper, based on PINNs, we propose two neural networks methods: mix-training physics-informed neural networks (MTPINNs) and prior information mix-training physics-informed neural networks (PMTPINNs). Numerical experiments have shown that the original PINNs are completely unable to simulate the high-order rogue waves of the cmKdV equation, but our proposed models not only simulate these high-order rogue waves, but also significantly improve the simulation ability, increasing prediction accuracy by three to four orders of magnitude. The inverse problem of these models is tested by some noise data, which also proves that these models have good robustness. The above results validate the superiority of our proposed models in simulating high-order rogue waves of cmKdV equation, and these models provide us some new insights for studying the dynamic characteristics of high-order rogue waves using neural networks methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Gustafsson, T., Rajagopal, K.R., Stenberg, R., Videman, J.: Nonlinear Reynolds equation for hydrodynamic lubrication. Appl. Math. Model. 39, 5299–5309 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  MATH  Google Scholar 

  3. Polyanin, A.D., Zhurov, A.I.: The functional constraints method: application to non-linear delay reaction?diffusion equations with varying transfer coefficients. Int. J. Nonlinear Mech. 67, 267–277 (2014)

    Article  Google Scholar 

  4. Parkins, A.S., Walls, D.F.: The physics of trapped dilute-gas Bose-Einstein condensates. Phys. Rep. 303, 1–80 (1998)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  6. Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: a generative model for raw audio. In: 9th ISCA Speech Syn Thesis Workshop, pp. 125–135 (2016)

  7. Heaton, J., Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. Genet. Program Evol. Mach. 19, 305–307 (2018)

    Article  MATH  Google Scholar 

  8. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015)

    Article  Google Scholar 

  9. Raissi, M., Karniadakis, G.E.: Physics informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    Article  MathSciNet  Google Scholar 

  10. Weinan, E., Han, J.Q., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sirignano, J., Spiliopoulos, K.: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Moseley, B., Markham, A., Nissen-Meyer, T.: Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations. arXiv:2107.07871 (2021)

  13. Bihlo, A., Popovych, R.O.: Physics-informed neural networks for the shallow-water equations on the sphere. J. Comput. Phys. 456, 111024 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, H.T., Wang, L., Zhang, Y.B., Lu, G., Su, J.J., Zhao, Y.C.: Data-driven solutions and parameter discovery of the Sasa-Satsuma equation via the physics-informed neural networks method. Physica D 440, 133489 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, J.H., Li, B.: Solving forward and inverse problems of the nonlinear Schrödinger equation with the generalized \(\cal{PT} \)-symmetric Scarf-II potential via PINN deep learning. Commun. Theor. Phys. 73, 125001 (2021)

    Article  Google Scholar 

  16. Pu, J.C., Chen, Y.: Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach. Chaos, Solitons Fractals 160, 112182 (2022)

    Article  MathSciNet  Google Scholar 

  17. Jagtap, A.D., Mao, Z.P., Adams, N., Karniadakis, G.E.: Physics-informed neural networks for inverse problems in supersonic flows. J. Comput. Phys. 466, 111402 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matteya, R., Ghosha, S.: A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations. Comput. Methods Appl. Mech. Eng. 390, 114474 (2022)

    Article  MathSciNet  Google Scholar 

  19. Rezaei, S., Harandi, A., Moeineddin, A., Xu, B.X., Reese, S.: A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: Comparison with finite element method. Comput. Methods Appl. Mech. Eng. 401, 115616 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J., Chen, Y.: A physics-constrained deep residual net work for solving the sine-Gordon equation. Commun. Theor. Phys. 73, 015001 (2021)

    Article  Google Scholar 

  21. Pu, J.C., Li, J., Chen, Y.: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints. Chin. Phys. B 30, 060202 (2021)

    Article  Google Scholar 

  22. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Article  Google Scholar 

  23. Pu, J.C., Chen, Y.: PINN deep learning for the Chen–Lee–Liu equation: rogue wave on the periodic back ground. Chaos, Solitons Fractals 160, 112182 (2022)

    Article  Google Scholar 

  24. Lin, S.N., Chen, Y.: A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. J. Comput. Phys. 41, 898–909 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Ling, L.M., Mo, Y.F., Zeng, D.L.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022)

    Article  MATH  Google Scholar 

  26. Wang, L., Yan, Z.Y.: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning. Phys. Lett. A 404, 127408 (2021)

    Article  MATH  Google Scholar 

  27. Wang, L., Yan, Z.Y.: Data-driven peakon and periodic peakon travelling wave solutions of some nonlinear dispersive equations via deep learning. Phys. Lett. A 450, 128373 (2022)

    Google Scholar 

  28. Fang, Y., Wu, G.Z., Wang, Y.Y., et al.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Article  Google Scholar 

  29. Zhou, Z.J., Yan, Z.Y.: Solving forward and inverse problems of the logarithmic nonlinear Schrödinger equation with \(\cal{PT} \)-symmetric harmonic potential via deep learning. Phys. Lett. A 387, 127010 (2021)

    Article  MATH  Google Scholar 

  30. Li, J.H., Chen, J.C., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn. 107, 781–792 (2022)

    Article  Google Scholar 

  31. Tian, S.F., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving complex nonlinear problems. Acta Phys. Sin. https://doi.org/10.7498/aps.72.20222381

  32. Li, J.H., Li, B.: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos, Solitons Fractals 164, 112712 (2022)

    Article  Google Scholar 

  33. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. 109, 3041–3050 (2022)

  34. Fang, Y., Wu, G.Z., Dai, C.Q.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos, Solitons Fractals 158, 112118 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, G.Z., Fang, Y., Dai, C.Q.: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN. Chaos, Solitons Fractals 152, 111393 (2022)

  36. Li, J., Cheng, J.H., Shi, J.Y., Huang, F.: Brief introduction of back propagation (BP) Neural Network algorithm and its improvement. Adv. CSIE 2, 553–558 (2012)

    Google Scholar 

  37. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  38. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  39. He, J.S., Wang, L.H., Li, L.J., Porsezian, K., Erdelyi, R.: Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant Nos. 12175111 and 12235007 and K.C. Wong Magna Fund in Ningbo University.

Funding

The funding was provided by National Natural Science Foundation of China under Grant Nos. 12175111 and 12235007 and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: (B(xt) and C(xt) of second-order rogue waves)

$$\begin{aligned} B(x,t)= & {} 2239488 a^{4} c^{14} t^{6}+46656 a^{12} c^{6} t^{6}\\{} & {} +2985984 c^{18} t^{6}\\{} & {} +\,559872 a^{8} c^{10} t^{6}+746496 a^{6} c^{10} t^{5} x\\{} & {} +\,93312 a^{10} c^{6} t^{5} x -1492992 a^{4} c^{12} t^{5} x\\{} & {} -\,186624 a^{8} c^{8} t^{5}x+1492992 a^{2} c^{14} t^{5} x\\{} & {} -\,2985984 c^{16} t^{5} x+1244160 c^{14} t^{4} x^{2}\\{} & {} -248832 a^{6} c^{8} t^{4} x^{2} -\,995328 a^{2} c^{12} t^{4} x^{2}\\{} & {} +\,622080 a^{4} c^{10} t^{4} x^{2}+77760 a^{8} c^{6} t^{4} x^{2}\\{} & {} -\,276480 c^{12} t^{3} x^{3}+34560 a^{6} c^{6} t^{3} x^{3}\\{} & {} -\,124416 a^{4} c^{8} t^{3} x^{3}+248832 a^{2} c^{10} t^{3} x^{3}\\{} & {} +\,34560 c^{10} t^{2} x^{4}+8640 a^{4} c^{6} t^{2} x^{4}\\{} & {} -\,27648 a^{2} c^{8} t^{2} x^{4}+1152 a^{2} c^{6} t x^{5}\\{} & {} -2304 c^{8} t x^{5}+64 c^{6} x^{6} -\,331776 c^{6} a^{6} t^{4}\\{} & {} -\,518400 c^{12} t^{4}+155520 c^{8} a^{4} t^{4}\\{} & {} -11664 c^{4} a^{8} t^{4}\\{} & {} +\,290304 c^{10} t^{3} x-15552 c^{4} a^{6} t^{3} x\\{} & {} +\,103680 c^{8} a^{2} t^{3} x-176256 c^{6} a^{4} t^{3} x \\{} & {} -58752 c^{8} t^{2} x^{2}\\{} & {} -\,6912 c^{6} a^{2} t^{2} x^{2}-7776 c^{4} a^{4} t^{2} x^{2}\\{} & {} +\,4992 c^{6} t x^{3}-1728 c^{4} a^{2} t x^{3}-144 c^{4} x^{4} \\{} & {} +\,124416 a c^{10} s_{1} t^{3}+31104 a^{5} c^{6} s_{1} t^{3}\\{} & {} -\,165888 a^{3} c^{8} s_{1} t^{3}+20736 a^{3} c^{6} s_{1} t^{2} x\\{} & {} -41472 a c^{8} s_{1} t^{2} x\\{} & {} +\,3456 a c^{6} s_{1} t x^{2} -18000 c^{6} t^{2}\\{} & {} -\,1620 c^{2} a^{4} t^{2}-1080 c^{2} a^{2} t x\\{} & {} +5616 c^{4} t x-180 c^{2} x^{2}\\{} & {} +\,864 c^{4} a s_{1} t+144 c^{4} s_{1}^{2}\\{} & {} +\,45+i(2985984 a c^{14} t^{5} +1492992 a^{5} c^{10} t^{5}\\{} & {} +\,186624 a^{9} c^{6} t^{5}-497664 a^{5} c^{8} t^{4} x\\{} & {} +\,995328 a^{3} c^{10} t^{4} x-1990656 a c^{12} t^{4} x\\{} & {} +\,248832 a^{7} c^{6} t^{4} x-331776 a^{3} c^{8} t^{3} x^{2}\\{} & {} +\,124416 a^{5} c^{6} t^{3} x^{2}+497664 a c^{10} t^{3} x^{2}\\{} & {} -\,55296 a c^{8} t^{2} x^{3}+27648 a^{3} c^{6} t^{2} x^{3}\\{} & {} +\,2304 a c^{6} t x^{4} +207360 c^{8} a t^{3}31104 c^{4} a^{5} t^{3}\\{} & {} -\,13824 c^{6} a t^{2} x-20736 c^{4} a^{3} t^{2} x\\{} & {} -\,3456 c^{4} a t x^{2}+20736 c^{8} s_{1} t^{2} \\{} & {} -\,41472 a^{2} c^{6} s_{1} t^{2}+5184 a^{4} c^{4} s_{1} t^{2}\\{} & {} +\,3456 a^{2} c^{4} s_{1} t x-6912 c^{6} s_{1} t x+576 c^{4} s_{1} x^{2}\\{} & {} -\,2160 a c^{2} t+144 s_{1} c^{2}) \end{aligned}$$

and

$$\begin{aligned} C(x,t)= & {} 2239488 a^{4} c^{14} t^{6}+2985984 c^{18} t^{6}\\{} & {} +\,46656 a^{12} c^{6} t^{6}\\{} & {} +\,559872 a^{8} c^{10} t^{6}+746496 a^{6} c^{10} t^{5} x\\{} & {} -\,1492992 a^{4} c^{12} t^{5} x -186624 a^{8} c^{8} t^{5} x\\{} & {} -\,2985984 c^{16} t^{5} x+93312 a^{10} c^{6} t^{5} x\\{} & {} +\,1492992 a^{2} c^{14} t^{5} x+1244160 c^{14} t^{4} x^{2}\\{} & {} -\,995328 a^{2} c^{12} t^{4} x^{2} +622080 a^{4} c^{10} t^{4} x^{2}\\{} & {} +\,77760 a^{8} c^{6} t^{4} x^{2}-248832 a^{6} c^{8} t^{4} x^{2}\\{} & {} +\,248832 a^{2} c^{10} t^{3} x^{3}+34560 a^{6} c^{6} t^{3} x^{3}\\{} & {} -\,124416 a^{4} c^{8} t^{3} x^{3}-276480 c^{12} t^{3} x^{3}\\{} & {} -\,27648 a^{2} c^{8} t^{2} x^{4}+8640 a^{4} c^{6} t^{2} x^{4}\\{} & {} +\,34560 c^{10} t^{2} x^{4}-2304 c^{8} t x^{5}\\{} & {} +\,1152 a^{2} c^{6} t x^{5}+64 c^{6} x^{6}\\{} & {} +995328 c^{10} a^{2} t^{4} +\,279936 c^{8} a^{4} t^{4}\\{} & {} -82944 c^{6} a^{6} t^{4}+3888 c^{4} a^{8} t^{4}\\{} & {} -\,269568 c^{12} t^{4}+124416 c^{10} t^{3} x\\{} & {} +\,5184 c^{4} a^{6} t^{3} x -51840 c^{6} a^{4} t^{3} x\\{} & {} -\,145152 c^{8} a^{2} t^{3} x\\{} & {} -\,17280 c^{8} t^{2} x^{2}-6912 c^{6} a^{2} t^{2} x^{2}\\{} & {} +\,2592 c^{4} a^{4} t^{2} x^{2}+384 c^{6} t x^{3}+576 c^{4} a^{2} t x^{3} \\{} & {} +\,48 c^{4} x^{4}-165888 a^{3} c^{8} s_{1} t^{3}\\{} & {} +\,124416 a c^{10} s_{1} t^{3}+31104 a^{5} c^{6} s_{1} t^{3}\\{} & {} +\,20736 a^{3} c^{6} s_{1} t^{2} x\\{} & {} -\,41472 a c^{8} s_{1} t^{2} x\\{} & {} +\,3456 a c^{6} s_{1} t x^{2} +20016 c^{6} t^{2}\\{} & {} +\,972 c^{2} a^{4} t^{2}+6912 c^{4} a^{2} t^{2}\\{} & {} +\,648 c^{2} a^{2} t x-2448 c^{4} t x\\{} & {} +\,108 c^{2} x^{2}-2592 c^{4} a s_{1} t+144 c^{4} s_{1}^{2}+9. \end{aligned}$$

Appendix B: (L1(xt) and L2(xt) of third-order rogue waves)

$$\begin{aligned} L_{1}(x,t)= & {} -4939273445868140625 t^{12}\\{} & {} -\,545023276785450000 t^{11} x\\{} & {} -\,388407392651700000 t^{10} x^{2} \\{} & {} -\,34025850934560000 t^{9} x^{3}\\{} & {} -\,12374529519456000 t^{8} x^{4}\\{} & {} -\,841946352721920 t^{7} x^{5} \\{} & {} -\,204871837925376 t^{6} x^{6}\\{} & {} -10322713903104 t^{5} x^{7}\\{} & {} -\,1860148592640 t^{4} x^{8}\\{} & {} -\,62710087680 t^{3} x^{9}-8776581120 t^{2} x^{10}\\{} & {} -\,150994944 t x^{11}-16777216 x^{12}\\{} & {} +\,2300237292280725000 t^{10} \\{} & {} +\,500080291038360000 t^{9} x\\{} & {} +\,178207653254544000 t^{8} x^{2}\\{} & {} +\,20160748631347200 t^{7} x^{3}\\{} & {} +\,4231975119851520 t^{6} x^{4}\\{} & {} +\,253682249269248 t^{5} x^{5}\\{} & {} +\,40317552230400 t^{4} x^{6}\\{} & {} +880347709440 t^{3} x^{7} \\{} & {} +\,141203865600 t^{2} x^{8}-1447034880 t x^{9}\\{} & {} +\,75497472 x^{10}+257120426548112400 t^{8}\\{} & {} -\,88521031030049280 t^{7} x\\{} & {} -\,1841385225323520 t^{6} x^{2}\\{} & {} -617799343104000 t^{5} x^{3} \\{} & {} -\,88747774156800 t^{4} x^{4}\\{} & {} -\,8252622766080 t^{3} x^{5}\\{} & {} -200693514240 t^{2} x^{6}\\{} & {} +\,1415577600 t x^{7}+235929600 x^{8}\\{} & {} +\,12647412412496640 t^{6}\\{} & {} +42148769126400 t^{5} x\\{} & {} -\,2996161228800 t^{4} x^{2} \\{} & {} -\,15902996889600 t^{3} x^{3}\\{} & {} +313860096000 t^{2} x^{4}\\{} & {} -\,8139571200 t x^{5}+707788800 x^{6}\\{} & {} -\,149676507590400 t^{4}\\{} & {} +2148738969600 t^{3} x\\{} & {} -\,1622998425600 t^{2} x^{2}+31186944000 t^{3} x \\{} & {} -\,928972800 x^{4}-95215564800 t^{2}\\{} & {} +21598617600 t x\\{} & {} -\,464486400 x^{2}+58060800 \\{} & {} +\,i(-6540279321425400000 t^{11}\\{} & {} -\,601404995073600000 t^{10} x\\{} & {} -\,423057306879360000 t^{9} x^{2}\\{} & {} -29901007761408000 t^{8} x^{3}\\{} & {} -\,10648770814771200 t^{7} x^{4}\\{} & {} -\,552411244265472 t^{6} x^{5}\\{} & {} -130559642173440 t^{5} x^{6}\\{} & {} -\,4494741995520 t^{4} x^{7}\\{} & {} -\,779700142080 t^{3} x^{8}-13589544960 t^{2} x^{9}\\{} & {} -\,1811939328 t x^{10}\\{} & {} -303419904173280000 t^{9}\\{} & {} +\,263517097430016000 t^{8} x \\{} & {} +29562711599923200 t^{7} x^{2}\\{} & {} +\,7820253397647360 t^{6} x^{3}\\{} & {} +\,799710056939520 t^{5} x^{4}\\{} & {} +58500443013120 t^{4} x^{5}\\{} & {} +\,5243865661440 t^{3} x^{6}\\{} & {} +\,40768634880 t^{2} x^{7}+6794772480 t x^{8}\\{} & {} +\,10822374648023040 t^{7}\\{} & {} -\,15805156998758400 t^{6} x\\{} & {} -366298181959680 t^{5} x^{2} \\{} & {} +\,157459297075200 t^{4} x^{3}\\{} & {} -\,6736379904000 t^{3} x^{4}-249707888640 t^{2} x^{5}\\{} & {} +\,16986931200 t x^{6} \\{} & {} +\,2321279745269760 t^{5}\\{} & {} -164322282700800 t^{4} x\\{} & {} +\,7849554739200 t^{3} x^{2}\\{} & {} -\,700710912000 t^{2} x^{3}+38220595200 t x^{4}\\{} & {} +4992863846400 t^{3}\\{} & {} -\,967458816000 t^{2} x\\{} & {} -\,33443020800 t x^{2}-8360755200 t) \end{aligned}$$
$$\begin{aligned} L_{2}(x,t)= & {} 4939273445868140625 t^{12}\\{} & {} +\,545023276785450000 t^{11} x\\{} & {} +388407392651700000 t^{10} x^{2} \\{} & {} +\,34025850934560000 t^{9} x^{3}\\{} & {} +\,12374529519456000 t^{8} x^{4}\\{} & {} +841946352721920 t^{7} x^{5} \\{} & {} +\,204871837925376 t^{6} x^{6}\\{} & {} +\,10322713903104 t^{5} x^{7}\\{} & {} +1860148592640 t^{4} x^{8} \\{} & {} +\,62710087680 t^{3} x^{9}+8776581120 t^{2} x^{10}\\{} & {} +\,150994944 t x^{11}+16777216 x^{12}\\{} & {} +\,1671541529351175000 t^{10}\\{} & {} -201221180459640000 t^{9} x\\{} & {} +\,29583374214960000 t^{8} x^{2} \\{} & {} -\,8646206984294400 t^{7} x^{3}\\{} & {} -205872145551360 t^{6} x^{4}\\{} & {} -\,102185078390784 t^{5} x^{5} \\{} & {} -\,5361951375360 t^{4} x^{6}-141416202240 t^{3} x^{7}\\{} & {} -\,16349921280 t^{2} x^{8}+2202009600 t x^{9} \\{} & {} +\,25165824 x^{10}+214192109547903600 t^{8}\\{} & {} +\,4346367735790080 t^{7} x \\{} & {} +\,3783154346910720 t^{6} x^{2}\\{} & {} -1075635551969280 t^{5} x^{3}\\{} & {} +\,40942170316800 t^{4} x^{4} \\{} & {} +\,1840480911360 t^{3} x^{5}+84333035520 t^{2} x^{6}\\{} & {} +\,849346560 t x^{7}+141557760 x^{8} \\{} & {} +\,3537485306138880 t^{6}\\{} & {} +789853361080320 t^{5} x\\{} & {} +\,130057245388800 t^{4} x^{2} \\{} & {} -\,11222478028800 t^{3} x^{3}\\{} & {} +402245222400 t^{2} x^{4}\\{} & {} -\,4034396160 t x^{5}+613416960 x^{6} \\{} & {} +\,90779142700800 t^{4}-6216180019200 t^{3} x\\{} & {} -\,269186457600 t^{2} x^{2}+11988172800 t x^{3} \\{} & {} +\,221184000 x^{4}+213178521600 t^{2}\\{} & {} -\,5009817600 t x+199065600x^{2}\\{} & {} +8294400 \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Niu, Z. & Li, B. Mix-training physics-informed neural networks for high-order rogue waves of cmKdV equation. Nonlinear Dyn 111, 16467–16482 (2023). https://doi.org/10.1007/s11071-023-08712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08712-3

Keywords

Navigation