Skip to main content
Log in

Quadrupole ion trap with dipolar DC excitation: motivation, nonlinear dynamics, and simple formulas

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the dynamics of a trapped ion in a mass spectrometer under the action of both the usual quadrupolar RF and dipolar DC excitation. The relevant governing equation, derived from electrostatic field calculations for realistic geometries, is a classical Mathieu equation perturbed with a constant inhomogeneous term and a small quadratic nonlinearity. An early paper by Plass examined the case without the quadratic term using variation of parameters. Here, we note a significantly simpler particular solution than used by Plass, include the quadratic term, and develop a second-order averaging-based approximation. The averaging results show that a particular underlying simple periodic solution is stable. We then show that a two-frequency approximation matches that solution well for practical purposes. Finally, we present and validate an easy iterative calculation for obtaining that two-frequency solution and quantify the effect of the quadratic nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Not applicable.

Notes

  1. Such methods, which do not require the expansion parameter to be small, can sometimes give very good results although they are not asymptotic methods.

  2. Physically, e.g., in a laboratory, we set q and \(\beta \) is determined as a result. For analytical work, it is simpler to choose a \(\beta \) of interest and then compute the required q. In terms of results obtained, there is no difference.

  3. With parametric excitation of the quadratic nonlinear term, which we do not have here, the resonance is felt at first order.

References

  1. March, R.E., Todd, J.F.J.: Quadrupole Ion Trap Mass Spectrometry, 2nd edn. John Wiley & Sons Inc., Hoboken, NJ (2005)

    Book  Google Scholar 

  2. Dawson, P.H.: Quadrupole Mass Spectrometry and its Applications. Elsevier, Amsterdam (1976)

    Google Scholar 

  3. Lammert, S.A., Cooks, R.G.: Surface-induced dissociation of molecular ions in a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 2, 487–491 (1991)

    Article  Google Scholar 

  4. Lammert, S.A., Cooks, R.G.: Pulsed axial activation in the ion trap: a new method for performing tandem mass spectroscopy (MS/MS). Rapid Commun. Mass Spectrom. 6, 528–530 (1992)

    Article  Google Scholar 

  5. Lammert, S.A., Cleven, C.D., Cooks, R.G.: Determination of ion frequencies in a quadrupole ion trap by using a fast direct current pulse as pump and a laser probe. J. Am. Soc. Mass Spectrom. 5, 29–36 (1994)

    Article  Google Scholar 

  6. Plass, W.R.: Theory of dipolar DC excitation and DC tomography in the rf quadrupole ion trap. Int. J. Mass Spectrom. 202, 175–197 (2000)

    Article  Google Scholar 

  7. Webb, I.K., Londry, F.A., McLuckey, S.A.: Implementation of dipolar direct current (DDC) collision-induced dissociation in storage and transmission modes on a quadrupole/time-of-flight tandem mass spectrometer. Rapid Commun. Mass Spectrom. 25, 2500–2510 (2011)

    Article  Google Scholar 

  8. Prentice, B.M., Xu, W., Ouyang, Z., McLuckey, S.A.: DC potentials applied to an end-cap electrode of a 3D ion trap for enhanced \(\rm MS^n\) functionality. Int. J. Mass Spectrom. 306, 114–122 (2011)

    Article  Google Scholar 

  9. Prentice, B.M., Santini, R.E., McLuckey, S.A.: Adaptation of a 3-D quadrupole ion trap for dipolar DC collisional activation. J. Am. Soc. Mass Spectrom. 22, 1486–1492 (2011)

    Article  Google Scholar 

  10. Prentice, B.M., McLuckey, S.A.: Dipolar DC collisional activation in a “stretched’’ 3-D ion trap: the effect of higher order fields on rf-heating. J. Am. Soc. Mass Spectrom. 23, 736–744 (2011)

    Article  Google Scholar 

  11. Shih, M., McLuckey, S.A.: Ion/ion charge inversion/attachment in conjunction with dipolar DC collisional activation as a selective screen for sulfo- and phosphopeptides. Int. J. Mass Spectrom. 444, 116181 (2019)

    Article  Google Scholar 

  12. Adhikari, S., Dziekonski, E.T., Londry, F.A., McLuckey, S.A.: Dipolar DC induced collisional activation of non-dissociated electron-transfer products. J. Mass Spectrom. 54, 459–465 (2019)

    Article  Google Scholar 

  13. Weil, C., Wells, J.M., Wollnik, H., Cooks, R.G.: Axial ion motion within the quadrupole ion trap elucidated by dc pulse tomography. Int. J. Mass Spectrom. 194, 225–234 (2000)

    Article  Google Scholar 

  14. Plass, W.R., Gill, L.A., Bui, H.A., Cooks, R.G.: Ion mobility measurement by dc tomography in an rf quadrupole ion trap. J. Phys. Chem. A 104(21), 5059–5065 (2000)

    Article  Google Scholar 

  15. Webb, I.K., Gao, Y., Londry, F.A., McLuckey, S.A.: Trapping mode dipolar DC collisional activation in the RF-only ion guide of a linear ion trap/time-of-flight instrument for gaseous bio-ion declustering. J. Mass Spectrom. 48, 1059–1065 (2013)

    Article  Google Scholar 

  16. Knight, R.D.: The general form of the quadrupole ion trap potential. Int. J. Mass Spectrom. Ion Phys. 51, 127–131 (1983)

    Article  Google Scholar 

  17. Wang, Y., Franzen, J.: The non-linear ion trap. Part 3. Multipole components in three types of practical ion trap. Int. J. Mass Spectrom. Ion Process. 132, 155–172 (1994)

    Article  Google Scholar 

  18. Rand, R.H., Armbruster, D.: Perturbation Methods, Bifurcation Theory and Computer Algebra. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  19. Zavodney, L.D., Nayfeh, A.H.: The response of a single-degree-of-freedom system with quadratic and cubic non-linearities to a fundamental parametric resonance. J. Sound Vib. 120(1), 63–93 (1988)

    Article  MATH  Google Scholar 

  20. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296(4), 797–829 (2006)

    Article  Google Scholar 

  21. Younesian, D., Esmailzadeh, E., Sedaghati, R.: Existence of periodic solutions for the generalized form of Mathieu equation. Nonlinear Dyn. 39, 335–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, C.H., Lee, C., Perkins, N.C.: Nonlinear vibration of sheet metal plates under interacting parametric and external excitation during manufacturing. ASME J. Vib. Acoust. 127(1), 36–43 (2005)

    Article  Google Scholar 

  23. Pandey, M., Rand, R.H., Zehnder, A.T.: Frequency locking in a forced Mathieu-van der Pol-Duffing system. Nonlinear Dyn. 54, 3–12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ramakrishnan, V., Feeny, B.F.: Resonances of a forced Mathieu equation with reference to wind turbine blades. ASME J. Vib. Acoust. 134(6), 064501 (2012)

    Article  Google Scholar 

  25. Natsiavas, S., Theodossiades, S., Goudas, I.: Dynamic analysis of piecewise linear oscillators with time periodic coefficients. Int. J. Non-Linear Mech. 35(1), 53–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, X., Hou, J., Chen, J.: An analytical method for Mathieu oscillator based on method of variation of parameter. Commun. Nonlinear Sci. Numer. Simul. 37, 326–353 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sevugarajan, S., Menon, A.G.: Transition curves and iso-\(\beta _u\) lines in nonlinear Paul traps. Int. J. Mass Spectrom. 218(2), 181–196 (2002)

    Article  Google Scholar 

  28. Esmailzadeh, E., Nakhaie-jazar, G.: Periodic solution of a Mathieu-Duffing type equation. Int. J. Non-linear Mech. 32(5), 905–912 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chatterjee, A.: Harmonic balance based averaging: approximate realizations of an asymptotic technique. Nonlinear Dyn. 32, 323–343 (2003)

    Article  MATH  Google Scholar 

  30. Abraham, G.T., Chatterjee, A.: Approximate asymptotics for a nonlinear Mathieu equation using harmonic balance based averaging. Nonlinear Dyn. 31, 347–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Abraham, G.T., Chatterjee, A., Menon, A.G.: Escape velocity and resonant ion dynamics in Paul trap mass spectrometers. Int. J. Mass Spectrom. 231(1), 1–16 (2004)

    Article  Google Scholar 

  32. Rajanbabu, N., Marathe, A., Chatterjee, A., Menon, A.G.: Multiple scales analysis of early and delayed boundary ejection in Paul traps. Int. J. Mass Spectrom. 261(2), 170–182 (2007)

    Article  Google Scholar 

  33. Das, S.L., Chatterjee, A.: Multiple scales via Galerkin projections: approximate asymptotics for strongly nonlinear oscillations. Nonlinear Dyn. 32, 161–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mahmoud, G.M.: Stability regions for coupled Hill’s equations. Physica A 242(1), 239–249 (1997)

    Article  Google Scholar 

  35. Mahmoud, G.M.: Periodic solutions of strongly non-linear Mathieu oscillators. Int. J. Non-linear Mech. 32(6), 1177–1185 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mahmoud, G.M.: On the generalized averaging method of a class of strongly nonlinear forced oscillators. Physica A 199(1), 87–95 (1993)

    Article  MATH  Google Scholar 

  37. Aghamohammadi, M., Sorokin, V., Mace, B.: Dynamic analysis of the response of Duffing-type oscillators subject to interacting parametric and external excitations. Nonlinear Dyn. 107, 99–120 (2022)

    Article  Google Scholar 

  38. Neumeyer, S., Sorokin, V.S., Thomsen, J.J.: Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier. J. Sound Vib. 386, 327–335 (2017)

    Article  Google Scholar 

  39. Bhattacharjee, A., Shah, K., Chatterjee, A.: Unifying averaged dynamics of the Fokker–Planck equation for Paul traps. Phys. Plasmas 26(1), 012302 (2019)

    Article  Google Scholar 

  40. McLachlan, N.W.: Theory and Applications of Mathieu Functions. Oxford University Press, Oxford (1947)

    MATH  Google Scholar 

  41. Tandel, D.D.: PhD thesis, in preparation. Indian Institute of Technology Kanpur (2023)

Download references

Acknowledgements

DDT thanks Bidhayak Goswami for help with Maple.

Funding

We have not received any financial support for conducting this research.

Author information

Authors and Affiliations

Authors

Contributions

D. D. Tandel contributed to detailed execution of analysis and writing. Anindya Chatterjee was involved in conception, aspects of analysis, guidance, and writing. Atanu K. Mohanty contributed to conception, aspects of analysis, execution of analysis, and writing.

Corresponding author

Correspondence to D. D. Tandel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandel, D.D., Chatterjee, A. & Mohanty, A.K. Quadrupole ion trap with dipolar DC excitation: motivation, nonlinear dynamics, and simple formulas. Nonlinear Dyn 111, 15837–15852 (2023). https://doi.org/10.1007/s11071-023-08706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08706-1

Keywords

Navigation