Skip to main content
Log in

A direct symbolic computation of center-controlled rogue waves to a new Painlevé-integrable (3+1)-D generalized nonlinear evolution equation in plasmas

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new integrable generalized (3+1)-dimensional nonlinear partial differential equation. We apply the standard Painlevé test to check the integrability, which shows the complete integrability of this equation. We employ symbolic computation directly to create the rogue waves using the center-controlled parameters \(\beta \) and \(\gamma \). We create first-, second-, and third-order rogue wave solutions via direct computation for various values of center-controlled parameters and suitable choices of different constants in the said equation. We obtain the bilinear equation in the auxiliary function f of the transformed variables \(\xi \) and \(\eta \) by using the transformation for dependent variable u. Using Hirota’s direct method to create rogue waves up to the third order, we apply the generalized formula for rogue waves formulated by N-soliton. Using the symbolic system tool Mathematica, we illustrate the dynamics for the rogue wave solutions with various center-controlled parameters. We demonstrate how massive rogue waves, present in many nonlinear events, behave dominantly over tiny rogue waves. The equation investigates the development of long waves with small amplitudes traveling in plasma physics and wave motion in fluids and other weakly dispersive mediums. Scientific areas, including oceanography, fluid dynamics, dusty plasma, optical fibers, nonlinear dynamics, and numerous other nonlinear fields, show the occurrence of rogue waves in one way or another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

No data from other sources have been used in this study.

References

  1. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simul. 43, 13–27 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Wazwaz, A.M.: Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1466–1472 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn. 110, 693–704 (2022)

    Google Scholar 

  4. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Wazwaz, A.M.: The Hirota’s direct method for multiple soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201, 489–503 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Jiang, Y., Tian, B., Wang, P., et al.: Bilinear form and soliton interactions for the modified Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. Nonlinear Dyn. 73, 1343–1352 (2013)

    MathSciNet  Google Scholar 

  7. Kumar, S., Mohan, B.: A study of multi-soliton solu- tions, breather, lumps, and their interactions for Kadomtsev- Petviashvili equation with variable time coefficient using Hirota method. Phys. Scr. 96(12), 125255 (2021)

    Google Scholar 

  8. Kumar, S., Mohan, B.: A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlevé analysis and Hirota Bilinear technique. Phys. Scr. 97, 125214 (2022)

    Google Scholar 

  9. Huang, Z.R., Tian, B., Zhen, H.L., et al.: Bäcklund transformations and soliton solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Nonlinear Dyn. 80, 1–7 (2015)

    MATH  Google Scholar 

  10. Yan, X.W., Tian, S.F., Dong, M.J., et al.: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)(3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn. 92, 709–720 (2018)

    MATH  Google Scholar 

  11. Guan, X., Liu, W., Zhou, Q., et al.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Google Scholar 

  12. Li, H.M., Tian, B., Xie, X.Y.: Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Nonlinear Dyn. 86, 369–380 (2016)

    Google Scholar 

  13. Lan, Z.Z.: Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 107, 106382 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Asaad, M.G., Ma, W.X.: Pfaffian solutions to a (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart. Appl. Math. Comput. 218, 5524–5542 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Huang, Q.M., Gao, Y.T.: Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation. Nonlinear Dyn. 89, 2855–2866 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Kumar, S., Rani, S., Mann, N.: Diverse analytical wave solutions and dynamical behaviors of the new (2+1)-dimensional Sakovich equation emerging in fluid dynamics. Europ. Phys. J. Plus 137(11), 1226 (2022)

    Google Scholar 

  17. Kumar, S., Rani, S.: Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq-Burgers system in ocean waves. Phys. Fluids 34(3), 037109 (2022)

    Google Scholar 

  18. Kumar, S., Kumar, A.: Lie symmetry reductions and group invariant solutions of (2 + 1)-dimensional modified Veronese web equation. Nonlinear Dyn. 98(3), 1891–1903 (2019)

    MATH  Google Scholar 

  19. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14, 597 (2022)

    Google Scholar 

  20. Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave structures of a (2+1)-dimensional dissipative long wave system. Phys. Scr. 96(12), 125202 (2021)

    Google Scholar 

  21. Kravchenko V.V.: Inverse Scattering Transform Method in Direct and Inverse Sturm-Liouville Problems. Frontiers in Mathematics, Birkhäuser, Cham., (2020)

  22. Zhou, X.: Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation. Commun. Math. Phys. 128, 551–564 (1990)

    MATH  Google Scholar 

  23. Zhang, R.F., Li, M.C., Fang, T., et al.: Multiple exact solutions for the dimensionally reduced p -gBKP equation via bilinear neural network method. Modern Phys. Lett. B 36(06), 2150590 (2022)

    MathSciNet  Google Scholar 

  24. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

    Google Scholar 

  25. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  26. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  27. Salah, M., Ragb, O., Wazwaz, A.M.: Efficient discrete singular convolution differential quadrature algorithm for solitary wave solutions for higher dimensions in shallow water waves. Waves in Rand. Compl. Media (2022). https://doi.org/10.1080/17455030.2022.2136420

    Article  Google Scholar 

  28. Nikolkina, I., Didenkulova, I.: Rogue waves in 2006–2010. Nat Hazards Earth Syst. Sci 11, 2913–2924 (2011)

    Google Scholar 

  29. Seadawy, A.R., Rizvi, S.T.R., Ahmed, S., Bashir, A.: Lump solutions, Kuznetsov–Ma breathers, rogue waves and interaction solutions for magneto electroelastic circular rod. Chaos. Soli. Fract. 163, 112563 (2022)

    MATH  Google Scholar 

  30. Residori, S., Onorato, M., Bortolozzo, U., Arecchi, F.T.: Rogue waves: a unique approach to multidisciplinary physics. Contemp. Phys. 58(1), 53–69 (2017)

    Google Scholar 

  31. Li, L., Xie, Y.: Rogue wave solutions of the generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Chaos Soli Fract. 147, 110935 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Sun, Y., Tian, B., Liu, L., Wu, X.Y.: Rogue waves for a generalized nonlinear Schrödinger equation with distributed coefficients in a monomode optical fiber. Chaos Solit. Fract. 107, 266–274 (2018)

    MATH  Google Scholar 

  33. Cao, Y., Tian, H., Ghanbari, B.: On constructing of multiple rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation. Phys. Scr. 96, 035226 (2021)

    Google Scholar 

  34. Zhang, R.F., Li, M.C., Gan, J.Y., et al.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solit. Fract. 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, R.F., Li, M.C., Albishari, M., et al.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Yang, X., Zhang, Z., Wazwaz, A.M., Wang, Z.: A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation. Phys. Lett. A 449, 128355 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Liu, W., Zhang, Y.: Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation. Appl. Math. Lett. 98, 184–190 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Zhaqilao: Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A 377(42), 3021–3026 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Guo, J., He, J., Li, M., Mihalache, D.: Multiple-order line rogue wave solutions of extended Kadomtsev-Petviashvili equation. Math. Comput. Simulat. 180, 251–257 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, H.Y., Zhang, Y.F.: Analysis on the M-rogue wave solutions of a generalized (3+1)-dimensional KP equation. Appl. Math. Lett. 102, 106145 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Li, L., Xie, Y., Mei, L.: Multiple-order rogue waves for the generalized (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Lett. 117, 107079 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Elboree, M.K.: Higher order rogue waves for the (3 + 1)-dimensional Jimbo-Miwa equation. Int. J. Nonlinear Sci. Numer. Simulat. 23, 7–8 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Zhaqilao: A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems. Comput. Math. Appl. 75(9), 3331–3342 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

    Google Scholar 

  45. Zhang, R.F., Bilige, S., et al.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  46. Zhang, R., Bilige, S., Chaolu, T.: Fractal solitons. arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  48. Kumar, S., Kumar, A., Mohan, B.: Evolutionary dynamics of solitary wave profiles and abundant analytical solutions to a (3+1)-dimensional burgers system in ocean physics and hydrodynamics. J. Ocean Eng. Sci. 8(1), 1–14 (2023)

    Google Scholar 

  49. Zhang, R.F., Li, M.C., Al-Mosharea, E., et al.: Rogue waves, classical lump solutions and generalized lump solutions for Sawada-Kotera-like equation. Int. J. Modern Phys. B 36(05), 2250044 (2022)

  50. Wazwaz, A.M., Hammad, M.A., El-Tantawy, S.A.: Bright and dark optical solitons for (3 + 1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  51. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Google Scholar 

  52. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  53. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3 + 1)- and (2 + 1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  54. Baldwin, D., Hereman, W.: Symbolic software for the Painlevé test of nonlinear differential ordinary and partial equations. J. Nonlinear Math. Phys. 13(1), 90–110 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and the referees for their insightful, encouraging, and helpful suggestions. Sachin Kumar, the author, would also like to express gratitude to the Science and Engineering Research Board (SERB), India, for financial support provided through the MATRICS Scheme (MTR/2020/000531).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachin Kumar or Brij Mohan.

Ethics declarations

Conflict of interest

According to the authors, there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mohan, B. A direct symbolic computation of center-controlled rogue waves to a new Painlevé-integrable (3+1)-D generalized nonlinear evolution equation in plasmas. Nonlinear Dyn 111, 16395–16405 (2023). https://doi.org/10.1007/s11071-023-08683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08683-5

Keywords

Navigation