Skip to main content
Log in

The dynamics of some exact solutions of the (3+1)-dimensional generalized shallow water wave equation

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The (3+1)-dimensional generalized shallow water wave equation is systematically investigated in this paper based on the Hirota bilinear method. The N-soliton solution and the higher-order kink-shaped breather solutions of the (3+1)-dimensional generalized shallow water wave equation are first proposed. Then, the line rogue wave solution and various hybrid solutions consisting of the breather, the kink-shaped soliton and the periodic solutions are discussed. Furthermore, the lump solutions of it are derived by using the long wave limit of the N-soliton solution. In addition, the diverse semi-rational solutions composed of lumps, kink solitons, line rogue wave and breathers enrich the research contents of the (3+1)-dimensional generalized shallow water wave equation. The dynamic behaviors of these exact solutions are vividly presented by their respective three-dimensional diagrams and density plots with contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this article are available from the corresponding author, upon reasonable request.

References

  1. Gu, C., Guo, B., Li, Y., et al.: Soliton Theory and Its Applications. Springer, Berlin (1995)

    Google Scholar 

  2. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons’’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  3. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    MATH  Google Scholar 

  4. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funktsional. Anal. i Prilozhen. 8, 43–53 (1974)

    MATH  Google Scholar 

  5. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  6. Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)

    MATH  Google Scholar 

  7. Fan, E.: Two new applications of the homogeneous balance method. Phys. Lett. A 265, 353–357 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Fu, Z., Liu, S., Liu, S., et al.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, H.: Extended Jacobi elliptic function expansion method and its applications. Commun. Nonlinear Sci. Numer. Simul. 12, 627–635 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Ma, W.X., Abdeljabbar, A.: A bilinear B\(\ddot{a}\)cklund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett. 25, 1500–1504 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Hietarinta, J., Joshi, N., Nijhoff, F.W.: Discrete Systems and Integrability. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  12. Lan, Z.Z., Gao, Y.T., Yang, J.W., et al.: Solitons, B\(\ddot{a}\)cklund transformation and Lax pair for a (2+1)-dimensional Broer-Kaup-Kupershmidt system in the shallow water of uniform depth. Commun. Nonlinear Sci. Numer. Simul. 44, 360–372 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  14. Gu, C., Hu, H., Zhou, Z.: Darboux transformations in integrable systems: theory and their applications to geometry. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Geng, X., Lv, Y.: Darboux transformation for an integrable generalization of the nonlinear Schr\(\ddot{o}\)dinger equation. Nonlinear Dyn. 69, 1621–1630 (2012)

    MATH  Google Scholar 

  16. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    MATH  Google Scholar 

  17. Hietarinta, J.: Introduction to the Hirota Bilinear Method. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds.) Integrability of Nonlinear Systems, pp. 95–103. Springer, Heidelberg (1997)

    Google Scholar 

  18. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota\(^{\prime }\)s bilinear method and by the tanh-coth method. Appl. Math. Comput. 190, 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg-de Vries and the Kadomtsev–Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)

    MathSciNet  MATH  Google Scholar 

  21. Ablowitz, M.J., Yaacov, D.B., Fokas, A.S.: On the inverse scattering transform for the Kadomtsev–Petviashvili equation. Stud. Appl. Math. 69, 135–143 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Ohta, Y., Yang, J.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)

    Google Scholar 

  24. Ohta, Y., Yang, J.: Dynamics of rogue waves in the Davey–Stewartson II equation. J. Phys. A: Math. Theor. 46, 105202 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Bao, W., Tang, Q., Xu, Z.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schr\(\ddot{o}\)dinger equation. J. Comput. Phys. 235, 423–445 (2013)

    MathSciNet  Google Scholar 

  26. Ren, P., Rao, J.: Bright-dark solitons in the space-shifted nonlocal coupled nonlinear Schr\(\ddot{o}\)dinger equation. Nonlinear Dyn. 108, 2461–2470 (2022)

    Google Scholar 

  27. Yuan, Y.Q., Tian, B., Liu, L., et al.: Solitons for the (2+1)-dimensional Konopelchenko–Dubrovsky equations. J. Math. Anal. Appl. 460, 476–486 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Darvishi, M.T., Najafi, M., Arbabi, S., et al.: Exact propagating multi-anti-kink soliton solutions of a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation. Nonlinear Dyn. 83, 1453–1462 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)

    MATH  Google Scholar 

  30. Tao, Y., He, J.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Google Scholar 

  31. Xu, S., He, J.: The rogue wave and breather solution of the Gerdjikov–Ivanov equation. J. Math. Phys. 53, 063507 (2012)

    MathSciNet  MATH  Google Scholar 

  32. He, J., Wang, L., Li, L., et al.: Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. Phys. Rev. E 89, 062917 (2014)

    Google Scholar 

  33. Villarroel, J., Prada, J., Estévez, P.G.: Dynamics of lump solutions in a 2+1 NLS equation. Stud. Appl. Math. 122, 395–410 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Foroutan, M., Manafian, J., Ranjbaran, A.: Lump solution and its interaction to (3+1)-D potential-YTSF equation. Nonlinear Dyn. 92, 2077–2092 (2018)

    Google Scholar 

  36. Peregrine, D.H.: Water waves, nonlinear Schr\(\ddot{o}\)dinger equations and their solutions. J. Aust. Math. Soc. Ser. B. 25, 16–43 (1983)

    Google Scholar 

  37. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    MATH  Google Scholar 

  38. Dysthe, K., Krogstad, H.E., Muller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Solli, D.R., Ropers, C., Koonath, P., et al.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Google Scholar 

  40. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009)

    Google Scholar 

  41. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Vector rogue waves in binary mixtures of Bose–Einstein condensates. Eur. Phys. J. Spec. Top. 185, 169–180 (2010)

    Google Scholar 

  42. El-Awady, E.I., Moslem, W.M.: On a plasma having nonextensive electrons and positrons: Rogue and solitary wave propagation. Phys. Plasmas 18, 082306 (2011)

    Google Scholar 

  43. Stenflo, L., Marklund, M.: Rogue waves in the atmosphere. J. Plasma Phys. 76, 293–295 (2010)

    Google Scholar 

  44. Geng, X.: Algebraic-geometrical solutions of some multidimensional nonlinear evolution equations. J. Phys. A: Math. Gen. 36, 2289–2303 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Geng, X., Ma, Y.: \(N\)-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A 369, 285–289 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Öziş, T., Aslan, İ: Exact and explicit solutions to the (3+1)-dimensional Jimbo–Miwa equation via the Exp-function method. Phys. Lett. A 372, 7011–7015 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Ma, W.X.: Lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation. Int. J. Nonlinear Sci. Numer. Simul. 17, 355–359 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  49. Ma, W.X., Abdeljabbar, A., Asaad, M.G.: Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation. Appl. Math. Comput. 217, 10016–10023 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Wazwaz, A.M.: Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation. Commun. Nonlinear Sci. Numer. Simul. 17, 491–495 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84, 1107–1112 (2016)

    MathSciNet  Google Scholar 

  52. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    MathSciNet  MATH  Google Scholar 

  53. Clarkson, P.A., Mansfield, E.L.: On a shallow water wave equation. Nonlinearity 7, 975–1000 (1994)

    MathSciNet  MATH  Google Scholar 

  54. Tian, B., Gao, Y.T.: Beyond travelling waves: a new algorithm for solving nonlinear evolution equations. Comput. Phys. Commun. 95, 139–142 (1996)

    MATH  Google Scholar 

  55. Zayed, E.M.E.: Traveling wave solutions for higher dimensional nonlinear evolution equations using the \((\frac{G^{\prime }}{G})\)-expansion method. J. Appl. Math. Inform. 28, 383–395 (2010)

    MATH  Google Scholar 

  56. Tang, Y.N., Ma, W.X., Xu, W.: Grammian and Pfaffian solutions as well as Pfaffianization for a (3+1)-dimensional generalized shallow water equation. Chin. Phys. B 21, 070212 (2012)

    Google Scholar 

  57. Zeng, Z.F., Liu, J.G., Nie, B.: Multiple-soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional generalized shallow water equation in oceans, estuaries and impoundments. Nonlinear Dyn. 86, 667–675 (2016)

    MathSciNet  MATH  Google Scholar 

  58. Liu, J.G., He, Y.: New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation. Nonlinear Dyn. 90, 363–369 (2017)

    MathSciNet  Google Scholar 

  59. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180–2186 (1978)

    MathSciNet  MATH  Google Scholar 

  60. Rao, J., Porsezian, K., He, J.: Semi-rational solutions of the third-type Davey–Stewartson equation. Chaos 27, 083115 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Rao, J., Cheng, Y., He, J.: Rational and semirational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

  62. Cao, Y., He, J., Mihalache, D.: Families of exact solutions of a new extended (2+1)-dimensional Boussinesq equation. Nonlinear Dyn. 91, 2593–2605 (2018)

    Google Scholar 

  63. Cao, Y., Rao, J., Mihalache, D., He, J.: Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas system. Appl. Math. Lett. 80, 27–34 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 1211153003, the Natural Science Foundation of Ningbo under Grant No. 2018A610197, K. C. Wong Magna Fund in Ningbo University.

Funding

The authors are supported by the NSF of Ningbo under Grant No. 2023J126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that they comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, L., Li, M. The dynamics of some exact solutions of the (3+1)-dimensional generalized shallow water wave equation. Nonlinear Dyn 111, 15633–15651 (2023). https://doi.org/10.1007/s11071-023-08664-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08664-8

Keywords

Mathematics Subject Classification

Navigation