Skip to main content
Log in

One-dimensional granular chains as transmitted force attenuators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We design a one-dimensional granular container in the form of a granular chain to reduce the force transmitted to a fixed barrier at its boundary. The granular chain considered is composed of ordered “heavy” and “light” beads (granules), and possesses strongly nonlinear acoustics due to Hertzian interactions, as well as zero tensile strength resulting in bead separations and subsequent collisions. We find the relationship between the transmitted force and the mass ratio of light beads to heavy beads and the relationship between the transmitted force and the number of beads in each subchain. We obtain an optimal design to minimize the transmitted force under the condition of a fixed total length of the chain. Computational predictions are validated by experiments, wherein we also estimate (i) the value of the damping between beads and (ii) the linear stiffness between the end bead and the barrier at the boundary of the granular chain. Transient, propagating localized oscillations are found in this system in both simulations and experiments, which result due to the strong nonlinearity of the granular chain. These results offer the possibility of systematically designing granular shock absorbers of enhanced performance compared to their linear counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during the performance of the work reported herein are not publicly available. Requests or questions regarding these data should be directed to the first author (Zhenjiang Zhou).

References

  1. Nesterenko, V.: Dynamics of Heterogeneous Materials. Springer, Berlin (2013)

    Google Scholar 

  2. Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26(3), 405–408 (1985)

    Google Scholar 

  3. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. (Engl. Transl.) 24(5), 733–743 (1984)

    Google Scholar 

  4. Nesterenko, V.F.: Waves in strongly nonlinear discrete systems. Philos. Trans. R. Soc. A 376, 20170130 (2018)

    Google Scholar 

  5. Herbold, E.B., Nesterenko, V.F.: Propagation of rarefaction pulses in discrete materials with strain-softening behavior. Phys. Rev. Lett. 110(14), 144101 (2013)

    Google Scholar 

  6. Takato, Y., Sen, S.: Long-lived solitary wave in a precompressed granular chain. EPL (Europhys. Lett.) 100(2), 24003 (2012)

    Google Scholar 

  7. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73(2), 026610 (2006)

    Google Scholar 

  8. Porter, M.A., Daraio, C., Herbold, E.B., Szelengowicz, I., Kevrekidis, P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77(1), 015601 (2008)

    MATH  Google Scholar 

  9. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    MathSciNet  Google Scholar 

  10. Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E 72(1), 016603 (2005)

    Google Scholar 

  11. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F.: New family of solitary waves in granular dimer chains with no precompression. Phys. Rev. E 83(3), 036606 (2011)

    MathSciNet  Google Scholar 

  12. Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56(5), 6104 (1997)

    Google Scholar 

  13. Jayaprakash, K.R,, Vakakis, A.F., Starosvetsky, Y.: Solitary waves in 1: N dimer chains. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2012)

  14. Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Solitary waves in a general class of granular dimer chains. J. Appl. Phys. 112(3), 034908 (2012)

    Google Scholar 

  15. Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Nonlinear resonances in a general class of granular dimers with no pre-compression. Granular Matter 15(3), 327–347 (2013)

    Google Scholar 

  16. Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Phys. Rev. E 82(2), 026603 (2010)

    MathSciNet  Google Scholar 

  17. Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Strongly nonlinear spatially periodic traveling waves in granular dimer chains. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, vol 45004, pp. 479–486 (2012)

  18. Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Strongly nonlinear traveling waves in granular dimer chains. Mech. Syst. Signal Process. 39(1–2), 91–107 (2013)

    Google Scholar 

  19. Kopidakis, G., Aubry, S.: Discrete breathers and delocalization in nonlinear disordered systems. Phys. Rev. Lett. 84(15), 3236 (2000)

    MATH  Google Scholar 

  20. James, G., Kevrekidis, P.G., Cuevas, J.: Breathers in oscillator chains with Hertzian interactions. Physica D 251, 39–59 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Sen, S., Mohan, T.K.: Dynamics of metastable breathers in nonlinear chains in acoustic vacuum. Phys. Rev. E 79(3), 036603 (2009)

    Google Scholar 

  22. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F., Manevitch, L.I.: Strongly nonlinear beat phenomena and energy exchanges in weakly coupled granular chains on elastic foundations. SIAM J. Appl. Math. 72(1), 337–361 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Hasan, M.A., Cho, S., Remick, K., Vakakis, A.F., McFarland, D.M., Kriven, W.M.: Experimental study of nonlinear acoustic bands and propagating breathers in ordered granular media embedded in matrix. Granular Matter 17(1), 49–72 (2015)

    Google Scholar 

  24. Hasan, M.A., Vakakis, A.F., McFarland, D.M.: Nonlinear localization, passive wave arrest and traveling breathers in two-dimensional granular networks with discontinuous lateral boundary conditions. Wave Motion 60, 196–219 (2016)

    MATH  Google Scholar 

  25. Zhang, Y.J., McFarland, D.M., Vakakis, A.F.: Propagating discrete breathers in forced one-dimensional granular networks: theory and experiment. Granular Matter 19(3), 1–22 (2017)

    Google Scholar 

  26. Hasan, M.A., Cho, S., Remick, K., Vakakis, A.F., McFarland, D.M., Kriven, W.M.: Primary pulse transmission in coupled steel granular chains embedded in PDMS matrix: experiment and modeling. Int. J. Solids Struct. 50(20–21), 3207–3224 (2013)

    Google Scholar 

  27. Kim, E., Chaunsali, R., Xu, H., Jaworski, J., Yang, J., Kevrekidis, P.G., Vakakis, A.F.: Nonlinear low-to-high-frequency energy cascades in diatomic granular crystals. Phys. Rev. E 92(6), 062201 (2015)

    Google Scholar 

  28. Starosvetsky, Y., Jayaprakash, K.R., Vakakis, A.F.: Scattering of solitary waves and excitation of transient breathers in granular media by light intruders and no precompression. J. Appl. Mech. 79(1), 01101 (2012)

    Google Scholar 

  29. Starosvetsky, Y., Hasan, M.A., Vakakis, A.F.: Nonlinear pulse equipartition in weakly coupled ordered granular chains with no precompression. J. Comput. Nonlinear Dyn. 8(3), 034504 (2013)

    Google Scholar 

  30. Szelengowicz, I., Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., Daraio, C.: Energy equipartition in two-dimensional granular systems with spherical intruders. Phys. Rev. E 87(3), 032204 (2013)

    Google Scholar 

  31. Potekin, R., McFarland, D.M., Vakakis, A.F.: Nonlinear wave scattering at the flexible interface of a granular dimer chain. Granular Matter 18(3), 1–17 (2016)

    Google Scholar 

  32. Zhang, Y.J., Hasan, M.A., Starosvetsky, Y., McFarland, D.M., Vakakis, A.F.: Nonlinear mixed solitary—shear waves and pulse equi-partition in a granular network. Physica D 291, 45–61 (2015)

    Google Scholar 

  33. Starosvetsky, Y., Jayaprakash, K.R., Vakakis, A.F.: Traveling and solitary waves in monodisperse and dimer granular chains. Int. J. Mod. Phys. B 31(10), 1742001 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., Manevitch, L.I.: Nonlinear targeted energy transfer and macroscopic analog of the quantum Landau-Zener effect in coupled granular chains. Physica D 252, 46–58 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.J., Moore, K.J., McFarland, D.M., Vakakis, A.F.: Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation. J. Appl. Phys. 118(23), 234901 (2015)

    Google Scholar 

  36. Hasan, M.A., Pichler, L., Starosvetsky, Y., McFarland, D.M., Vakakis, A.F.: Effects of uncertainties on pulse attenuation in dimer granular chains with and without pre-compression. Continuum Mech. Thermodyn. 27(4), 749–766 (2015)

    Google Scholar 

  37. Lydon, J., Jayaprakash, K.R., Ngo, D., Starosvetsky, Y., Vakakis, A.F., Daraio, C.: Frequency bands of strongly nonlinear homogeneous granular systems. Phys. Rev. E 88(1), 012206 (2013)

    Google Scholar 

  38. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Gendelman, O.V.: Nonlinear resonances leading to strong pulse attenuation in granular dimer chains. J. Nonlinear Sci. 23(3), 363–392 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Rosas, A., Romero, A.H., Nesterenko, V.F., Lindenberg, K.: Short-pulse dynamics in strongly nonlinear dissipative granular chains. Phys. Rev. E 78(5), 051303 (2008)

    Google Scholar 

  40. Zhang, Q.F., Li, W., Lambros, J., Bergman, L.A., Vakakis, A.F.: Pulse transmission and acoustic non-reciprocity in a granular channel with symmetry-breaking clearances. Granular Matter 22(1), 1–16 (2020)

    Google Scholar 

  41. Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F., Peeters, M., Kerschen, G.: Nonlinear normal modes and band zones in granular chains with no pre-compression. Nonlinear Dyn. 63(3), 359–385 (2011)

    MathSciNet  Google Scholar 

  42. Hong, J.: Universal power-law decay of the impulse energy in granular protectors. Phys. Rev. Lett. 94(10), 108001 (2005)

    Google Scholar 

  43. Potekin, R., Jayaprakash, K.R., McFarland, D.M., Remick, K., Bergman, L.A., Vakakis, A.F.: Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer chains. Exp. Mech. 53(5), 861–870 (2013)

    Google Scholar 

  44. Li, F., Zhao, L., Tian, Z., Yu, L., Yang, J.: Visualization of solitary waves via laser Doppler vibrometry for heavy impurity identification in a granular chain. Smart Mater. Struct. 22(3), 035016 (2013)

    Google Scholar 

Download references

Funding

This research was supported by the “One Belt One Road” program through Zhejiang Province and the Zhejiang University of Technology-Institute of Applied Physics, Russian Academy of Sciences Joint Research Laboratory of Innovative Technology of Acoustics and Vibration through Grant No. 2018C04018; the National Natural Science Foundation of China through Grants No. 51975525 and 52005443; the Natural Science Foundation of Zhejiang Province through Grant No. LQ21E050016; and the Ministry of Science and Technology of China through Grant No. 2017YFC0306202.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the planning, execution, and interpretation of the work reported. Zhenjiang Zhou carried out the simulations and experiments and wrote a first draft of the manuscript. Michael McFarland directed the research and wrote the final draft. Xiangle Cheng, Huancai Lu, and Alexander Vakakis assisted with technical and administrative problems. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Michael McFarland.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., McFarland, D.M., Cheng, X. et al. One-dimensional granular chains as transmitted force attenuators. Nonlinear Dyn 111, 14713–14730 (2023). https://doi.org/10.1007/s11071-023-08658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08658-6

Keywords

Navigation