Skip to main content
Log in

Modeling the scaling properties of human mobility in virtual space

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

People are increasingly involved in online activities. Online activities can be regarded as movements in virtual space, such as jumping from webpage to webpage while surfing online, switching channels while watching TV, and browsing commodities while shopping online, which can affect information propagation, innovation spread, social activities, etc. Most previous efforts have been devoted to modeling the scaling properties of human mobility in physical space. Few studies aim to establish a unified and integral model to understand the fundamental dynamics underlying human virtual mobility. In this paper, we study human mobility in virtual space empirically and theoretically based on two datasets involving TV watching and online shopping and attempt to answer three unsolved issues. First, human virtual mobility shares common features, supported by the fact that striking agreements appear in the scaling properties of both datasets. Second, there exists a universal rule governing an individual’s choice in virtual mobility, which is distinct from that in the real world due to travel restrictions. Third, there exists a unified model incorporating the behavior rule unique to virtual space under the framework of Exploration and Preferential Return, which can be used to reproduce the scaling properties of virtual mobility. We reveal the mechanism behind human virtual mobility through consistent scaling properties and develop a corresponding dynamic model based on empirical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

1. Dataset D1: This anonymized dataset represents 3 months of viewing records from 30 thousand users in 2015. The dataset cannot be disclosed for confidentiality reasons.2. Dataset D2: This dataset contains behavior data for 60 thousand users from a large multicategory online store in October 2019. The dataset is free and available at https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store.

References

  1. Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)

    Article  Google Scholar 

  2. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  Google Scholar 

  3. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., Mascolo, C.: A tale of many cities: universal patterns in human urban mobility. PLOS ONE 7, e37027 (2012)

    Article  Google Scholar 

  4. Yan, X.-Y., Han, X.-P., Wang, B.-H., Zhou, T.: Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci. Rep. 3, 2678 (2013)

    Article  Google Scholar 

  5. Eubank, S., Guclu, H., Anil Kumar, V., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)

    Article  Google Scholar 

  6. Toroczkai, Z., Guclu, H.: Proximity networks and epidemics. Phys A: Stat. Mech. Appl. 378, 68–75 (2007)

    Article  Google Scholar 

  7. Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., Blondel, V.D., Tatem, A.J.: Dynamic population mapping using mobile phone data. Proc. Nat. Acad. Sci. 111, 15888–15893 (2014)

    Article  Google Scholar 

  8. Berlingerio, M., Calabrese, F., Lorenzo, G. D., Nair, R., Pinelli, F., Sbodio, M. L.: Allaboard: a system for exploring urban mobility and optimizing public transport using cellphone data, In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, pp. 663–666 (2013)

  9. Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility, social ties, and link prediction, In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1100–1108 (2011)

  10. Miritello, G., Moro, E., Lara, R.: Dynamical strength of social ties in information spreading. Phys. Rev. E 83, 045102 (2011)

    Article  Google Scholar 

  11. Blondel, V.D., Decuyper, A., Krings, G.: A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015)

    Article  Google Scholar 

  12. Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010)

    Article  Google Scholar 

  13. Yan, X.-Y., Wang, W.-X., Gao, Z.-Y., Lai, Y.-C.: Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 8, 1639 (2017)

    Article  Google Scholar 

  14. Kang, C., Liu, Y., Guo, D., Qin, K.: A generalized radiation model for human mobility: spatial scale, searching direction and trip constraint. PLOS ONE 10, e0143500 (2015)

    Article  Google Scholar 

  15. Szell, M., Sinatra, R., Petri, G., Thurner, S., Latora, V.: Understanding mobility in a social petri dish. Sci. Rep. 2, 457 (2012)

    Article  Google Scholar 

  16. Lin, M., Hsu, W.-J., Lee, Z. Q.: Modeling high predictability and scaling laws of human mobility, In: 2013 IEEE 14th International Conference on Mobile Data Management, Volume 02, volume 2, IEEE, pp. 125–130 (2013)

  17. Lee, K., Hong, S., Kim, S. J., Rhee, I., Chong, S.: Slaw: A new mobility model for human walks, in: IEEE INFOCOM 2009, IEEE, pp. 855–863 (2009)

  18. Han, X.-P., Wang, B.-H.: Impacts of distance and memory in the emergence of scaling mobility pattern of human. Phys. Proc. 3, 1907–1911 (2010)

    Article  Google Scholar 

  19. Hu, Y., Zhang, J., Huan, D., Di, Z.: Toward a general understanding of the scaling laws in human and animal mobility. Europhys. Lett. 96, 38006 (2011)

    Article  Google Scholar 

  20. Moro, E., Calacci, D., Dong, X., Pentland, A.: Mobility patterns are associated with experienced income segregation in large us cities. Nat. Commun. 12, 4633 (2021)

    Article  Google Scholar 

  21. Zhao, Z.-D., Huang, Z.-G., Huang, L., Liu, H., Lai, Y.-C.: Scaling and correlation of human movements in cyberspace and physical space. Phys. Rev. E 90, 050802 (2014)

    Article  Google Scholar 

  22. Zhao, Y.-M., Zeng, A., Yan, X.-Y., Wang, W.-X., Lai, Y.-C.: Unified underpinning of human mobility in the real world and cyberspace. New J. Phys. 18, 053025 (2016)

    Article  MATH  Google Scholar 

  23. Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabási, A.-L., Wang, D.: Scaling identity connects human mobility and social interactions. Proc. Nat. Acad. Sci. 113, 7047–7052 (2016)

    Article  Google Scholar 

  24. Hu, T., Xia, Y., Luo, J.: To return or to explore: Modelling human mobility and dynamics in cyberspace, In: The World Wide Web Conference, pp. 705–716 (2019)

  25. De Nadai, M., Cardoso, A., Lima, A., Lepri, B., Oliver, N.: Strategies and limitations in app usage and human mobility. Sci. Rep. 9, 10935 (2019)

    Article  Google Scholar 

  26. Arthur, R., Williams, H.T.: Scaling laws in geo-located twitter data. PLOS ONE 14, e0218454 (2019)

    Article  Google Scholar 

  27. Jiang, S., Fiore, G. A., Yang, Y., Ferreira Jr, J., Frazzoli, E., González, M. C.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities, In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, pp. 1–9 (2013)

  28. Zhao, C., Zeng, A., Yeung, C.H.: Characteristics of human mobility patterns revealed by high-frequency cell-phone position data. EPJ Data Sci. 10, 5 (2021)

    Article  Google Scholar 

  29. Cai, H., Zhan, X., Zhu, J., Jia, X., Chiu, A.S., Xu, M.: Understanding taxi travel patterns. Physica A: Stat. Mech. Appl. 457, 590–597 (2016)

    Article  Google Scholar 

  30. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuste, S.B., Klafter, J., Lindenberg, K.: Number of distinct sites visited by a subdiffusive random walker. Phys. Rev. E 77, 032101 (2008)

    Article  Google Scholar 

  32. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E., Stanley, H.E.: Optimizing the success of random searches. Nature 401, 911–914 (1999)

    Article  Google Scholar 

  33. Zhao, Z.-D., Cai, S.-M., Lu, Y.: Non-markovian character in human mobility: online and offline, chaos: an interdisciplinary. J. Nonlin. Sci. 25, 063106 (2015)

    Google Scholar 

  34. Crang, M.: Cyberspace as the new public domain. Johns Hopkins University Press, Woodrow Wilson International Center for Scholars (2010)

    Google Scholar 

  35. Chen, Y., Li, X., Zhang, R., Huang, Z.-G., Lai, Y.-C.: Instantaneous success and influence promotion in cyberspace-how do they occur? Physica A: Stat. Mech. Appl. 556, 124725 (2020)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11775020 and 11675001).

Author information

Authors and Affiliations

Authors

Contributions

MW: Software, Validation, Visualization, Writing—original draft. AZ: Conceptualization, Methodology, Writing—review &editing. XC: Conceptualization, Methodology, Validation, Writing—review &editing.

Corresponding author

Correspondence to Xiaohua Cui.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1906 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zeng, A. & Cui, X. Modeling the scaling properties of human mobility in virtual space. Nonlinear Dyn 111, 15165–15175 (2023). https://doi.org/10.1007/s11071-023-08642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08642-0

Keywords

Navigation