Skip to main content
Log in

Data-driven forward–inverse problems for the variable coefficients Hirota equation using deep learning method

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates data-driven forward–inverse problems associated with the variable coefficients Hirota (VC-Hirota) equation using the physics-informed neural network (PINN) algorithm. First, we propose an improved PINN algorithm with a locally adaptive activation function to recover data-driven solitons and high-order solitons solutions for the VC-Hirota equation. Second, we demonstrate the effectiveness of the improved PINN algorithm in accurately predicting parameters under different noise intensities using a parameter regularization strategy and appropriate weight coefficients. Third, we introduce a PINNs approach that employs two neural networks to tackle the function discovery problem. The neural network with time and space coordinates in the input layer is used to train the prediction solution, and the neural network with only time coordinates in the input layer is trained to model the unknown function in the variable coefficient function. This work presents a successful attempt to use the PINN method to solve the function discovery problem of VC-Hirota equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All date generated or analyzed during this study are included in this published article.

References

  1. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  Google Scholar 

  2. Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78, 448–451 (1997)

    Article  Google Scholar 

  3. Wazwaz, A.M., Hammad, M.A., El-Tantawy, S.A.: Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Article  Google Scholar 

  4. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Article  Google Scholar 

  5. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  6. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a Matter-Wave bright soliton. Science 296, 1290–1293 (2002)

    Article  Google Scholar 

  7. Palacios, S.L., Guinea, A., Fernandez-Diaz, J.M., Crespo, R.D.: Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift. Phys. Rev. E 60, 45–47 (1999)

    Article  Google Scholar 

  8. Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nat. photonics 6, 84–92 (2012)

    Article  Google Scholar 

  9. Kodama, Y.: Optical solitons in a Monomode fiber. J. Stat Phys. 39, 597–613 (1985)

    Article  MathSciNet  Google Scholar 

  10. Tao, Y. S., He, J. S.: The integrability and solvability for the variable coefficient higher-order nonlinear Schrödinger equation, consumer electronics, communications and networks (CECNet), international conference, pp. 5402-5405 (2011)

  11. Papaioannou, E., Frantzeskakis, D.J., Hizanidis, K.: An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point. IEEE J. Quantum Elect. 32, 145–154 (1996)

    Article  Google Scholar 

  12. Yang, R.C., Li, L., Hao, R.Y., Li, Z.H., Zhou, G.S.: Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)

    Article  MathSciNet  Google Scholar 

  13. Dai, C.Q., Zhang, J.F.: New solitons for the Hirota equation and generalized higher-order nonlinear Schrödinger equation with variable coefficients. J. Phys. A: Math. Gen. 39, 723–737 (2006)

    Article  MATH  Google Scholar 

  14. Wang, P., Tian, B., Liu, W.J., Li, M., Sun, K.: Soliton solutions for a generalized inhomogeneous variable-coefficient Hirota equation with symbolic computation. Stud. Appl. Math. 125, 213–222 (2010)

    MathSciNet  MATH  Google Scholar 

  15. He, J.S., Tao, Y.S., Porsezian, K., Fokas, A.S.: Rogue wave management in an inhomogeneous nonlinear fibre with higher order effects. J. Nonlinear Math. Phy. 20, 407–419 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rajan, M., Mahalingam, A.: Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction. Nonlinear Dyn. 79, 2469–2484 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, D.Y., Tian, B., Hu, C.C., Liu, S.H., Shan, W.R., Jiang, Y.: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber. Wave. Random Complex (2021). https://doi.org/10.1080/17455030.2021.1983237

    Article  Google Scholar 

  19. Zhou, H.J., Chen, Y.: High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation. Commun. Nonlinear Sci. 120, 107149 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3, 551–560 (1990)

    Article  Google Scholar 

  21. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Article  Google Scholar 

  22. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  23. Zhang, R.F., Li, M.C., Gan, J.Y., et al.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Soliton. Fract. 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, R.F., Li, M.C., Albishari, M., et al.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks. Proc. R. Soc. A 476, 20200334 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, H., Lu, L., Perdikaris, P., Karniadakis, G.E.: A neural network enhanced by local adaptation for solving differential equations. J. Comput. Phys. 404, 109117 (2020)

    MathSciNet  Google Scholar 

  29. Zhang, H., Lu, L., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks with local adaptation: application to the 2D Boussinesq equations. J. Comput. Phys. 429, 110107 (2021)

    Google Scholar 

  30. Li, J., Chen, Y.: Solving second-order nonlinear evolution partial differential equations using deep learning. Commun. Theor. Phys. 72, 105005 (2020)

    Article  MathSciNet  Google Scholar 

  31. Li, J., Chen, Y.: A deep learning method for solving third-order nonlinear evolution equations. Commun. Theor. Phys. 72, 115003 (2020)

    Article  MathSciNet  Google Scholar 

  32. Pu, J.C., Li, J., Chen, Y.: Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints. Chin. Phys. B 30, 060202 (2021)

    Article  Google Scholar 

  33. Peng, W.Q., Pu, J.C., Chen, Y.: PINN deep learning for the Chen-Lee-Liu equation: rogue wave on the periodic background. Commun. Nonlinear Sci. 105, 106067 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miao, Z.W., Chen, Y.: Physics-informed neural network method in high-dimensional integrable systems. Mod. Phys. Lett. B 36(1), 2150531 (2022)

    Article  MathSciNet  Google Scholar 

  35. Lin, S.N., Chen, Y.: A two-stage physics-informed neural network method based on con- served quantities and applications in localized wave solutions. J. Comput. Phys. 457, 111053 (2022)

    Article  MATH  Google Scholar 

  36. Fang, Y., Wu, G.Z., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Article  Google Scholar 

  37. Wang, L., Yan, Z.Y.: Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning. Phys. Lett. A 404, 127408 (2021)

    Article  MATH  Google Scholar 

  38. Wu, G.Z., Fang, Y., Wang, Y.Y., Wu, G.C., Dai, C.Q.: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN. Chaos, Soliton. Fract. 152, 111393 (2021)

  39. Mo, Y.F., Ling, L.M., Zeng, D.L.: Data-driven vector soliton solutions of coupled nonlinear Schrödinger equation using a deep learning algorithm. Phys. Lett. A 421, 127739 (2022)

  40. Li, J.H., Chen, J.C., Li, B.: Gradient-optimized physics-informed neural networks (GOPINNs): a deep learning method for solving the complex modified KdV equation. Nonlinear Dyn. 107, 781–792 (2022)

    Article  Google Scholar 

  41. Zhou, Z.J., Yan, Z.Y.: Solving forward and inverse problems of the logarithmic nonlinear Schrödinger equation with-symmetric harmonic potential via deep learning. Phys. Lett. A 387, 127010 (2021)

    Article  MATH  Google Scholar 

  42. Pu, J.C., Li, J., Chen, Y.: Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method. Nonlinear Dyn. 105, 1723–1739 (2021)

    Article  Google Scholar 

  43. Pu, J.C., Chen, Y.: Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach. Chaos, Soliton. Fract. 160, 112182 (2022)

  44. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd international conference on learning representations, ICLR 2015-conference track proceedings (2015)

  45. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Zhengwu Miao sincerely for providing with valuable comments.

Funding

This work is supported by National Natural Science Foundation of China (No.12175069 and No.12235007), Science and Technology Commission of Shanghai Municipality (No.21JC1402500 and No.22DZ2229014), and Natural Science Foundation of Shanghai (No.23ZR1418100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank Zhengwu Miao sincerely for providing with valuable comments. This work is supported by National Natural Science Foundation of China (No. 12175069 and No. 12235007) and Science and Technology Commission of Shanghai Municipality (No. 21JC1402500 and No. 22DZ2229014).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Pu, J. & Chen, Y. Data-driven forward–inverse problems for the variable coefficients Hirota equation using deep learning method. Nonlinear Dyn 111, 14667–14693 (2023). https://doi.org/10.1007/s11071-023-08641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08641-1

Keywords

Navigation