Skip to main content
Log in

Investigations on the nonlinear dynamic characteristics of a rotor supported by hybrid foil magnetic bearings

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Hybrid foil magnetic bearings (HFMB) are highly suitable for oil-free turbomachinery and high-speed compressors under variable conditions due to their advantages such as frictionless operation at low speeds, reliable high-speed operation and adjustable dynamic performance. By adjusting the working mode and load sharing ratio, HFMB can optimize the dynamic performance and improve the stability of the rotor system. This paper presents investigations on the rotordynamics of a rigid rotor supported by two HFMBs. The coastdown response of the rotor supported by HFMBs and gas foil bearings from 65 krpm to rest is recorded experimentally and used to validate the calculated results of the rotordynamic model. Computational methods are used to predict the effect of load sharing ratios and working modes on rotordynamics as a function of HFMB operating conditions. The effects of load and equilibrium position on the rotordynamics are also predicted. Orbit simulations, Fast Fourier Transform, Poincaré maps and bifurcation diagrams are used for the theoretical analysis. The results show that an appropriate load sharing ratio with hybrid mode can effectively improve the rotordynamic performance of the HFMBs-rotor system, while increasing the load can also significantly improve the stability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

\(A_{0}\) :

Cross-sectional area of the magnetic circuit

\({\text{C}}\) :

Radial clearance

\({\mathbf{D}}\) :

Damping matrix

\({\text{E}}\) :

Modulus of elasticity

\({\text{EI}}\) :

Bending stiffness of the top foil segment

\(e\) :

Eccentricity

\({\mathbf{F}}\) :

Vector of forces

\(F_{mx} ,F_{my}\) :

Electromagnetic force

\(F_{1} ,F_{2}\) :

Electromagnetic forces generated by bias currents

\(F_{bx} ,F_{by}\) :

Radial force generated by the bearing

\(F_{ux} ,F_{uy}\) :

Radial force generated by unbalanced mass

\(F_{AMBrx} ,F_{AMBlx} ,F_{AMBry} ,F_{AMBly}\) :

Radial force of the AMB

\(F_{GFBlx} ,F_{GFBly}\) :

Radial force of the GFB

\(h\) :

Film thickness

\(\overline{h}\) :

Dimensionless film thickness \({( = }h{\text{/C)}}\)

\(I_{T}\) :

Translational moment of inertia

\(I_{P}\) :

Polar moment of inertia

\(i_{0x1} ,i_{0x2} ,i_{0y1} ,i_{0y2}\) :

Equilibrium current

\(i_{0} ,i_{x1} ,i_{x2} ,i_{y1} ,i_{y2}\) :

Coil current

\(k_{i} ,k_{ix1} ,k_{ix2} ,k_{iy1} ,k_{iy2}\) :

Current stiffness

\(k_{x} ,k_{xx1} ,k_{xx2} ,k_{xy1} ,k_{xy2}\) :

Displacement stiffness

\(L\) :

Axial length of bearing

\(l_{0}\) :

Half-length of bump

\({\mathbf{M}}\) :

Mass matrix

\(M_{xb} ,M_{yb}\) :

Rotational moments generated by bearing forces

\(M_{xu} ,M_{yu}\) :

Rotational moments generated by rotor imbalance mass

\(m\) :

Rotor mass

\(mg\) :

Gravity of the rotor

\(m_{ul} ,m_{ur}\) :

Unbalanced mass

\(N\) :

Number of turns of coils

\(p,p_{l} ,p_{r}\) :

Pressure

\(\overline{p}\) :

Dimensionless pressure \({( = }p{\text{/Pa)}}\)

\({\text{p}}_{{\text{a}}}\) :

Ambient pressure

\(p_{i,j}\) :

Pressure at different nodes

\(R\) :

Radius of bearing or rotor

\(s\) :

Distance between grid points in the circumferential direction

\(t\) :

Time

\(t_{b}\) :

Thickness of bump foil

\(\Delta t\) :

Time step

\(u_{l}\), \(u_{r}\) :

Radius of the unbalance mass

\(v\) :

Poisson ratio

\(x,y\) :

Displacement of the rotor mass center in Cartesian coordinates

\(x_{0x1} ,x_{0x2} ,x_{0y1} ,x_{0y2}\) :

Equilibrium position

\(x_{0} ,x_{x1} ,x_{x2} ,x_{y1} ,x_{y2}\) :

Rotor center displacement

\(z,z_{l} ,z_{r}\) :

Axial coordinate

\(\overline{z}\) :

Dimensionless axial coordinate \({( = }z{\text{/R)}}\)

\(\Delta z\) :

Distance between grid points in the axial direction

\(z_{bl} ,z_{br}\) :

Distance from the bearings to the rotor mass center

\(z_{ul} ,z_{ur}\) :

Distance from the unbalance mass to the rotor mass center

\(\delta\) :

Vector of the displacement of the rotor

\(\varepsilon\) :

Local top foil deflection

\(\varepsilon_{i,j}\) :

Deflection of the top foil at different nodes

\(\phi\) :

Initial phase

\(\gamma\) :

\(( = \frac{\upsilon }{\omega })\)

\(\mu\) :

Gas viscosity

\(\mu_{0}\) :

Permeability of air

\(\theta ,\theta_{l} ,\theta_{r}\) :

Angular coordinate

\(\theta_{0}\) :

Attitude angle

\(\theta_{x} ,\theta_{y}\) :

Rotation angle of the rotor along different axes

\(\tau\) :

Anytime

\(\upsilon\) :

Excitation frequency

\(\omega\) :

Angular velocity of rotor

\(\Lambda\) :

Bearing number \(\left( {{ = }\frac{{{6}\mu {\Omega }}}{{{\text{p}}_{{\text{a}}} }}\left( {\frac{{\text{R}}}{\omega }} \right)^{{2}} } \right)\)

References

  1. Pham, M.N., Ahn, H.J.: Experimental optimization of a hybrid foil-magnetic bearing to support a flexible rotor. Mech. Syst. Signal Proc. 46(2), 361–372 (2014)

    Google Scholar 

  2. Jeong, S., Jeon, D., Lee, Y.B.: Rigid mode vibration control and dynamic behavior of hybrid foil-magnetic bearing turbo blower. J. Eng. Gas. Turbines Power-Trans. ASME. 139(5), 052501 (2017)

    Google Scholar 

  3. Heshmat, H., Chen, H.M., Walton, J.F.: On the performance of hybrid foil-magnetic bearings. J. Eng. Gas. Turbines Power Trans. ASME. 122(1), 73–81 (2000)

    Google Scholar 

  4. Swanson, E.E., Heshmat, H., Walton, J.: Performance of a foil-magnetic hybrid bearing. J. Eng. Gas. Turbines Power-Trans. ASME. 124(2), 375–382 (2002)

    Google Scholar 

  5. Jeong, S., Lee, Y.B.: Effects of eccentricity and vibration response on high-speed rigid rotor supported by hybrid foil-magnetic bearing. Proc. Inst. Mech. Eng. Part C J. Eng. Mech. Eng. Sci. 230(6), 994–1006 (2016)

  6. Jeong, S., Lee, Y.B.: Vibration control of high-speed rotor supported by hybrid foil-magnetic bearing with sudden imbalance. J. Vib. Control. 23(8), 1296–1308 (2017)

    Google Scholar 

  7. Swanson, E.E.: Bump foil damping using a simplified model. J. Tribol.-Trans. ASME. 128(3), 542–550 (2006)

    Google Scholar 

  8. Lee, Y.B., Park, D.J., Kim, C.H., Kim, S.J.: Operating characteristics of the bump foil journal bearings with top foil bending phenomenon and correlation among bump foils. Tribol. Int. 41(4), 221–233 (2008)

    Google Scholar 

  9. Le Lez, S., Arghir, M., Frene, J.: A new bump-type foil bearing structure analytical model. J. Eng. Gas. Turbines Power-Trans. ASME. 129(4), 1047–1057 (2007)

    Google Scholar 

  10. Feng, K., Kaneko, S.: Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model. J. Tribol.-Trans. ASME. 132(2), 021706 (2010)

    Google Scholar 

  11. Larsen, J.S., Varela, A.C., Santos, I.F.: Numerical and experimental investigation of bump foil mechanical behaviour. Tribol. Int. 74, 46–56 (2014)

    Google Scholar 

  12. Arakere, N.K., Nelson, H.D.: An analysis of gas-lubricated foil-journal bearings. Tribol. Trans. 35(1), 1–10 (1992)

    Google Scholar 

  13. Faria , M.T.C., San Andrés, L.: On the Numerical Modeling of High-Speed Hydrodynamic Gas Bearings. J. Tribol. Trans. ASME. 122(1), 124–130 (1999)

  14. Ullah, H., Shoaib, M., Akbar, A., Raja, M.A.Z., Islam, S., Nisar, K.S.: Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates. Arab. J. Sci. Eng. 47(12), 16371–16391 (2022)

    Google Scholar 

  15. Ullah, H., Khan, I., Fiza, M., Hamadneh, N.N., Fayz-Al-Asad, M., Islam, S., Khan, I., Raja, M.A.Z., Shoaib, M.: MHD boundary layer flow over a stretching sheet: a new stochastic method. Math. Probl. Eng. 2021, 9924593 (2021)

    Google Scholar 

  16. Ullah, H., Fiza, M., Zahoor Raja, M.A., Khan, I., Shoaib, M., Al-Mekhlafi, S.M.: Intelligent computing of levenberg-marquard technique backpropagation neural networks for numerical treatment of squeezing nanofluid flow between two circular plates. Math. Probl. Eng. 2022, 9451091 (2022)

    Google Scholar 

  17. Bilal, H., Ullah, H., Fiza, M., Islam, S., Raja, M.A.Z., Shoaib, M., Khan, I.: A Levenberg-Marquardt backpropagation method for unsteady squeezing flow of heat and mass transfer behaviour between parallel plates. Adv. Mech. Eng. 13(10), 16878140211040896 (2021)

    Google Scholar 

  18. Bhore, S.P., Darpe, A.K.: Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings. J. Sound Vibr. 332(20), 5135–5150 (2013)

    Google Scholar 

  19. Bonello, P., Pham, H.M.: The efficient computation of the nonlinear dynamic response of a foil–air bearing rotor system. J. Sound Vibr. 333(15), 3459–3478 (2014)

    Google Scholar 

  20. Bonello, P., Pham, H.M.: Nonlinear dynamic analysis of high speed oil-free turbomachinery with focus on stability and self-excited vibration. J. Tribol.-Trans. ASME. 136(4), 041705 (2014)

    Google Scholar 

  21. Larsen, J.S., Santos, I.F.: On the nonlinear steady-state response of rigid rotors supported by air foil bearings—theory and experiments. J. Sound Vibr. 346, 284–297 (2015)

    Google Scholar 

  22. Larsen, J.S., Santos, I.F., von Osmanski, S.: Stability of rigid rotors supported by air foil bearings: comparison of two fundamental approaches. J. Sound Vibr. 381, 179–191 (2016)

    Google Scholar 

  23. Xu, F.C., Kim, D.: Dynamic performance of foil bearings with a quadratic stiffness model. Neurocomputing 216, 666–671 (2016)

    Google Scholar 

  24. Von Osmanski, S., Larsen, J.S., Santos, I.F.: A fully coupled air foil bearing model considering friction—theory and experiment. J. Sound Vibr. 400, 660–679 (2017)

    Google Scholar 

  25. Guan, H.-Q., Feng, K., Yu, K., Cao, Y.-L., Wu, Y.-H.: Nonlinear dynamic responses of a rigid rotor supported by active bump-type foil bearings. Nonlinear Dyn. 100(3), 2241–2264 (2020)

    Google Scholar 

  26. Jiang, K., Zhu, C.: Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain. Mech. Syst. Signal Proc. 25(4), 1417–1429 (2011)

    Google Scholar 

  27. Kozanecka, D., Kozanecki, Z., Łagodziński, J.: Active magnetic damper in a power transmission system. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2273–2278 (2011)

    Google Scholar 

  28. Defoy, B., Alban, T., Mahfoud, J.: Experimental assessment of a new fuzzy controller applied to a flexible rotor supported by active magnetic bearings. J. Vib. Acoust. Trans. ASME. 136(5), 051006 (2014)

    Google Scholar 

  29. Lyu, X., Di, L., Yoon, S.Y., Lin, Z., Hu, Y.: A platform for analysis and control design: Emulation of energy storage flywheels on a rotor-AMB test rig. Mechatronics 33, 146–160 (2016)

    Google Scholar 

  30. Schweitzer, G., Maslen, E.H.: Magnetic beaRings: Theory, Design, and Application to Rotating Machinery. Springer, Heidelberg (2009)

    Google Scholar 

  31. Chen, S.Y., Lin, F.J.: Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system. IEEE Trans. Control Syst. Technol. 19(3), 636–643 (2011)

    Google Scholar 

  32. Kandil, A., Sayed, M., Saeed, N.A.: On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic bearings system. Eur. J. Mech. A-Solids. 84, 104051 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Saeed, N.A., Mahrous, E., Awrejcewicz, J.: Nonlinear dynamics of the six-pole rotor-AMB system under two different control configurations. Nonlinear Dyn. 101(4), 2299–2323 (2020)

    Google Scholar 

  34. Lindlau, J.D., Knospe, C.R.: Feedback linearization of an active magnetic bearing with voltage control. IEEE Trans. Control Syst. Technol. 10(1), 21–31 (2002)

    Google Scholar 

  35. Wang, S., Zhu, H., Wu, M., Zhang, W.: active disturbance rejection decoupling control for three-degree-of- freedom six-pole active magnetic bearing based on bp neural network. IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020)

    Google Scholar 

  36. Zhu, H., Wang, S.: Decoupling control based on linear/non-linear active disturbance rejection switching for three-degree-of-freedom six-pole active magnetic bearing. IET Electr. Power Appl. 14(10), 1818–1827 (2020)

    Google Scholar 

  37. Zhang, X., Sun, Z., Zhao, L., Yan, X., Zhao, J., Shi, Z.: Analysis of supercritical pitchfork bifurcation in active magnetic bearing-rotor system with current saturation. Nonlinear Dyn. 104(1), 103–123 (2021)

    Google Scholar 

  38. Lee, Y.B., Lee, K.M., Chung, J.-T., Kim, S.J., Jeong, S.N.: Dynamic Characteristics of the Combined Smart Bearing. In: ASME/STLE 2011 International Joint Tribology Conference. ASME/STLE 2011 Joint Tribology Conference, pp. 337–339 (2011)

  39. San Andrés, L., Kim, T.H.: Forced nonlinear response of gas foil bearing supported rotors. Tribol. Int. 41(8), 704–715 (2008)

    Google Scholar 

  40. Rubio, D., San Andrés, L.: Bump-type foil bearing structural stiffness: experiments and predictions. J. Eng. Gas. Turbines Power-Trans. ASME. 128(3), 653–660 (2004)

    Google Scholar 

  41. Guo, Z., Peng, L., Feng, K., Liu, W.: Measurement and prediction of nonlinear dynamics of a gas foil bearing supported rigid rotor system. Measurement 121, 205–217 (2018)

    Google Scholar 

  42. Feng, K., Guo, Z.: Prediction of dynamic characteristics of a bump-type foil bearing structure with consideration of dynamic friction. Tribol. Trans. 57(2), 230–241 (2014)

    Google Scholar 

  43. Zhang, H., Yin, Q., Guan, H., Cao, Y., Feng, K.: Theoretical investigation of hybrid foil-magnetic bearings on operation mode and load sharing strategy. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 236(12), 2491–2506 (2022)

  44. Kim, D., Park, S.: Hydrostatic air foil bearings: analytical and experimental investigation. Tribol. Int. 42(3), 413–425 (2009)

    Google Scholar 

  45. Heshmat, H., Walowit, J.A., Pinkus, O.: Analysis of gas-lubricated foil journal bearings. J. Lubr. Technol. 105(4), 647–655 (1983)

    Google Scholar 

  46. Peng, J.P., Carpino, M.: Calculation of stiffness and damping coefficients for elastically supported gas foil bearings. J. Tribol.-Trans. ASME. 115(1), 20–27 (1993)

    Google Scholar 

  47. Wu, Y.H., Deng, M.W., Feng, K., Guan, H.Q., Cao, Y.L.: Investigations on the nonlinear dynamic characteristics of a rotor supported by porous tilting pad bearings. Nonlinear Dyn. 100(3), 2265–2286 (2020)

    Google Scholar 

  48. Kim, D., Nicholson, B., Rosado, L., Givan, G.: Rotordynamics performance of hybrid foil bearing under forced vibration input. J. Eng. Gas. Turbines Power-Trans. ASME. 140(1), 012507 (2017)

    Google Scholar 

  49. Bently, D.E.: Fundamentals of Rotating Machinery Diagnostics. ASME, Canada (2003)

    Google Scholar 

  50. Fan, C.C., Pan, M.C.: Experimental study on the whip elimination of rotor-bearing systems with electromagnetic exciters. Mech. Mach. Theory 46(3), 290–304 (2011)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (U22A20214), National Key Research and Development Program of China (2021YFF0600208), and the Science and Technology Innovation Program of Hunan Province (2020RC4018, 2020GK2069).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HZ, MC, XZ, LF and KF. The first draft of the manuscript was written by HZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Miaomiao Cheng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cheng, M., Zhou, X. et al. Investigations on the nonlinear dynamic characteristics of a rotor supported by hybrid foil magnetic bearings. Nonlinear Dyn 111, 14879–14899 (2023). https://doi.org/10.1007/s11071-023-08635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08635-z

Keywords

Navigation