Skip to main content
Log in

A neural adaptive prescribed performance controller for the chaotic PMSM stochastic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The permanent magnet synchronous motor (PMSM) is a highly nonlinear, multivariable, strongly coupled and complex control system, and is susceptible to stochastic disturbances. Also considering chaotic oscillations, prescribed performance constraint, full-state constraints, input constraints and system stochastic noise, a neural adaptive prescribed performance controller (NAPPC) is presented in this paper. Firstly, a novel unified prescribed performance quartic cosine type barrier Lyapunov function (QC-BLF) is designed to handle both prescribed performance constraint and full-state constraints to ensure that the PMSM has higher safety, faster response time, and lower tracking error simultaneously. This QC-BLF can achieve effective control on asymmetric constrained, symmetric constrained, or unconstrained PMSM without redesigning the controller. In addition, radial basis function neural network (RBFNN) is used to approximate the unknown nonlinearities and unknown gains of the system. A tracking differentiator (TD) is adopted to effectively solve the “explosion of complexity” caused by the backstepping method and an error compensation mechanism is designed to compensate for the filtering error generated by the TD. Based on the above, a NAPPC is implemented. This controller ensures that all closed-loop signals are eventually bounded, all prescribed performance constraint, state constraints and input constraints are achieved, and the PMSM is successfully freed from chaotic oscillations. Finally, the comparative simulation results with the method in other paper verify the effectiveness and superiority of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Yu, Y., Cong, L.Y., Tian, X., Mi, Z.Q., Li, Y., Fan, Z., Fan, H.: A stator current vector orientation based multi-objective integrative suppressions of flexible load vibration and torque ripple for PMSM considering electrical loss. CES Trans. Electr. Mach. Syst. 4, 161–171 (2020)

    Article  Google Scholar 

  2. Hong, D.K., Hwang, W., Lee, J.Y., Woo, B.C.: Design, analysis, and experimental validation of a permanent magnet synchronous motor for articulated robot applications. IEEE Trans. Magn. 54, 1–4 (2018). https://doi.org/10.1109/TMAG.2017.2752080

    Article  Google Scholar 

  3. Lu, S.K., Wang, X.C., Li, Y.N.: Adaptive neural network control for fractional-order PMSM with time delay based on command filtered backstepping. AIP Adv. 9, 055105 (2019). https://doi.org/10.1063/1.5094574

    Article  Google Scholar 

  4. Chen, X., Hu, J.B., Peng, Z.X., Yuan, C.H.: Bifurcation and chaos analysis of torsional vibration in a PMSM-based driven system considering electromechanically coupled effect. Nonlinear Dyn. 88, 277–292 (2017). https://doi.org/10.1007/s11071-017-3419-z

    Article  Google Scholar 

  5. Gritli, H., Belghith, S.: Displayed phenomena in the semi-passive torso-driven biped model under OGY-based control method: Birth of a torus bifurcation. Appl. Math. Model. 40, 2946–2967 (2016). https://doi.org/10.1016/j.apm.2015.09.066

    Article  MathSciNet  MATH  Google Scholar 

  6. Khan, A., Chaudhary, H.: A comprehensive analysis on controlling and hybrid synchronization in identical chaotic systems via active control method. J. Phys. Conf. Ser. 2267, 012039 (2022). https://doi.org/10.1088/1742-6596/2267/1/012039

    Article  Google Scholar 

  7. Kumar, S., Khan, A.: Controlling and synchronization of chaotic systems Via Takagi-Sugeno fuzzy adaptive feedback control techniques. J. Control Autom. Electr. Syst. 32, 842–852 (2021). https://doi.org/10.1007/s40313-021-00714-z

    Article  Google Scholar 

  8. Wu, L.G., Zheng, W.X., Gao, H.J.: Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58, 785–791 (2013). https://doi.org/10.1109/TAC.2012.2211456

    Article  MathSciNet  MATH  Google Scholar 

  9. Yin, L.J., Deng, Z.H., Huo, B.Y., Xia, Y.Q.: Finite-time synchronization for chaotic gyros systems with terminal sliding mode control. IEEE Trans. Syst. Man Cybern. Syst. 49, 1131–1140 (2019). https://doi.org/10.1109/TSMC.2017.2736521

    Article  Google Scholar 

  10. Kim, H., Son, J., Lee, J.: A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans. Industr. Electron. 58, 4069–4077 (2011). https://doi.org/10.1109/TIE.2010.2098357

    Article  Google Scholar 

  11. Mobayen, S.: Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control. ISA Trans. (2018). https://doi.org/10.1016/j.isatra.2018.03.026

    Article  Google Scholar 

  12. Chen, Q., Ren, X.M., Na, J.: Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors. ISA Trans. 58, 262–269 (2015). https://doi.org/10.1016/j.isatra.2015.07.005

    Article  Google Scholar 

  13. Alanis, A.Y., Sanchez, E.N., Loukianov, A.G.: Real-time discrete backstepping neural control for induction motors. IEEE Trans. Control Syst. Technol. 19, 359–366 (2011). https://doi.org/10.1109/TCST.2010.2041780

    Article  Google Scholar 

  14. Kim, S.K.: Speed and current regulation for uncertain PMSM using adaptive state feedback and backstepping control. In: 2009 IEEE International Symposium on Industrial Electronics. pp. 1275–1280 (2009)

  15. Chen, C.X., Xie, Y.X., Lan, Y.H.: Backstepping control of speed sensorless permanent magnet synchronous motor based on slide model observer. Int. J. Autom. Comput. 12, 149–155 (2015). https://doi.org/10.1007/s11633-015-0881-2

    Article  Google Scholar 

  16. Lu, S.K., Wang, X.C., Wang, L.D.: Finite-time adaptive neural network control for fractional-order chaotic PMSM via command filtered backstepping. Adv Differ Equ. 2020, 121 (2020). https://doi.org/10.1186/s13662-020-02572-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, J.X., Wang, S.L., Zhou, P., Zhao, L., Li, S.B.: Novel prescribed performance-tangent barrier Lyapunov function for neural adaptive control of the chaotic PMSM system by backstepping. Int. J. Electr. Power Energy Syst. 121, 105991 (2020). https://doi.org/10.1016/j.ijepes.2020.105991

    Article  Google Scholar 

  18. Gao, S.G., Dong, H.R., Ning, B., Tang, T., Li, Y.D.: Nonlinear mapping-based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification. IET Control Theory Appl. 12, 819–827 (2018). https://doi.org/10.1049/iet-cta.2017.0550

    Article  MathSciNet  Google Scholar 

  19. Cheng, S., Yu, J.P., Lin, C., Zhao, L., Ma, Y.M.: Neuroadaptive finite-time output feedback control for PMSM stochastic nonlinear systems with iron losses via dynamic surface technique. Neurocomputing 402, 162–170 (2020). https://doi.org/10.1016/j.neucom.2020.02.063

    Article  Google Scholar 

  20. Tong, S.C., Li, Y.M., Feng, G., Li, T.S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41, 1124–1135 (2011). https://doi.org/10.1109/TSMCB.2011.2108283

    Article  Google Scholar 

  21. Chai, J.Y., Ho, Y.H., Chang, Y.C., Liaw, C.M.: On acoustic-noise-reduction control using stochastic switching technique for switch-mode rectifiers in PMSM drive. IEEE Trans. Industr. Electron. 55, 1295–1309 (2008). https://doi.org/10.1109/TIE.2007.909759

    Article  Google Scholar 

  22. Jiang, Q., Ma, Y.M., Liu, J.P., Yu, J.P.: Full state constraints-based adaptive fuzzy finite-time command filtered control for permanent magnet synchronous motor stochastic systems. Int. J. Control Autom. Syst. 20, 2543–2553 (2022). https://doi.org/10.1007/s12555-021-0558-2

    Article  Google Scholar 

  23. Jiang, Q., Liu, J.P., Yu, J.P., Lin, C.: Full state constraints and command filtering-based adaptive fuzzy control for permanent magnet synchronous motor stochastic systems. Inf. Sci. 567, 298–311 (2021). https://doi.org/10.1016/j.ins.2021.02.050

    Article  MathSciNet  Google Scholar 

  24. Chen, C.L.P., Liu, Y.J., Wen, G.X.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44, 583–593 (2014). https://doi.org/10.1109/TCYB.2013.2262935

    Article  Google Scholar 

  25. Zhao, Z.H., Yu, J.P., Zhao, L., Yu, H.S., Lin, C.: Adaptive fuzzy control for induction motors stochastic nonlinear systems with input saturation based on command filtering. Inf. Sci. 463–464, 186–195 (2018). https://doi.org/10.1016/j.ins.2018.06.042

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, T., Wang, N., Qiu, J.B., Buccella, C., Cecati, C.: Adaptive event-triggered control of stochastic nonlinear systems with unknown dead-zone. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3183763

    Article  Google Scholar 

  27. Yu, J.P., Shi, P., Dong, W.J., Lin, C.: Command filtering-based fuzzy control for nonlinear systems with saturation input. IEEE Trans. Cybern. 47, 2472–2479 (2017). https://doi.org/10.1109/TCYB.2016.2633367

    Article  Google Scholar 

  28. Cui, G.Z., Yu, J.P., Wang, Q.G.: Finite-time adaptive fuzzy control for MIMO nonlinear systems with input saturation via improved command-filtered backstepping. IEEE Trans. Syst. Man Cybern. Syst. 52, 980–989 (2022). https://doi.org/10.1109/TSMC.2020.3010642

    Article  Google Scholar 

  29. Gao, S.G., Dong, H.R., Ning, B.: Neural adaptive control of uncertain chaotic systems with input and output saturation. Nonlinear Dyn. 80, 375–385 (2015). https://doi.org/10.1007/s11071-014-1875-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Lv, Z.X., Ma, Y.M., Liu, J.P., Yu, J.P.: Full-state constrained adaptive fuzzy finite-time dynamic surface control for PMSM drive systems. Int. J. Fuzzy Syst. 23, 804–815 (2021). https://doi.org/10.1007/s40815-020-00982-y

    Article  Google Scholar 

  31. Hua, C.C., Meng, R., Li, K., Guan, X.P.: Full state constraints-based adaptive tracking control for uncertain nonlinear stochastic systems with input saturation. J. Frankl. Inst. 357, 5125–5142 (2020). https://doi.org/10.1016/j.jfranklin.2020.02.017

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Y.J., Tong, S.: Barrier Lyapunov Functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64, 70–75 (2016). https://doi.org/10.1016/j.automatica.2015.10.034

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang, H.F., He, W., Li, J.S., Xu, B., Yang, C.G., Zhang, W.C.: Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance. IEEE Trans. Cybern. 52, 772–783 (2022). https://doi.org/10.1109/TCYB.2019.2921254

    Article  Google Scholar 

  34. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47, 2511–2516 (2011). https://doi.org/10.1016/j.automatica.2011.08.044

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, L.J., Chen, C.L.P., Li, H.: Event-triggered adaptive control of saturated nonlinear systems with time-varying partial state constraints. IEEE Trans. Cybern. 50, 1485–1497 (2020). https://doi.org/10.1109/TCYB.2018.2865499

    Article  Google Scholar 

  36. Wei, H., Huang, H., Ge, S.S., Li, H.Y.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 47, 3136–3147 (2017). https://doi.org/10.1109/TCYB.2017.2711961

    Article  Google Scholar 

  37. Chen, L.S.: Asymmetric prescribed performance-barrier Lyapunov function for the adaptive dynamic surface control of unknown pure-feedback nonlinear switched systems with output constraints. Int. J. Adapt. Control Signal Process. 32, 1417–1439 (2018). https://doi.org/10.1002/acs.2921

    Article  MathSciNet  MATH  Google Scholar 

  38. Sun, T.R., Pan, Y.P.: Robust adaptive control for prescribed performance tracking of constrained uncertain nonlinear systems. J. Frankl. Inst. 356, 18–30 (2019). https://doi.org/10.1016/j.jfranklin.2018.09.005

    Article  MathSciNet  MATH  Google Scholar 

  39. Zou, M.J., Yu, J.P., Ma, Y.M., Zhao, L., Lin, C.: Command filtering-based adaptive fuzzy control for permanent magnet synchronous motors with full-state constraints. Inf. Sci. 518, 1–12 (2020). https://doi.org/10.1016/j.ins.2020.01.004

    Article  MathSciNet  MATH  Google Scholar 

  40. Chang, W.M., Tong, S.C.: Adaptive fuzzy tracking control design for permanent magnet synchronous motors with output constraint. Nonlinear Dyn. 87, 291–302 (2017). https://doi.org/10.1007/s11071-016-3043-3

    Article  MATH  Google Scholar 

  41. Zhao, L., Luo, S.H., Yang, G.C., Dong, R.Z.: Chaos analysis and stability control of the MEMS resonator via the type-2 sequential FNN. Microsyst. Technol. 27, 173–182 (2020). https://doi.org/10.1007/s00542-020-04935-1

    Article  Google Scholar 

  42. Sun, G.F., Li, D.W., Ren, X.M.: Modified neural dynamic surface approach to output feedback of MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 224–236 (2014). https://doi.org/10.1109/TNNLS.2014.2312001

    Article  MathSciNet  Google Scholar 

  43. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76, 924–941 (2003). https://doi.org/10.1080/0020717031000099029

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors would like to appreciate all the editors and reviewers for improving the quality of this article. This work was supported by the National Key Research and Development Program of China (2018YFB1304800) and Key Research and Development Program of Guangdong Province (2020B090926002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YS, YT and JL. The first draft of the manuscript was written by YT and YS. YS and YT have the same contribution to the article. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junyang Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Tuo, Y. & Li, J. A neural adaptive prescribed performance controller for the chaotic PMSM stochastic system. Nonlinear Dyn 111, 15055–15073 (2023). https://doi.org/10.1007/s11071-023-08634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08634-0

Keywords

Navigation