Skip to main content
Log in

Gaussian process regression combined with dynamic data reconciliation for improving the performance of nonlinear dynamic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Process data are generally subjected to noise during the measuring, transmission and processing procedures, which may lead to the deterioration and even failure of the process supervision and control. Although Kalman filters are widely used to estimate the true states of linear or linearized systems, their applications are limited to state–space models that can be mathematical or empirical. Neural networks are satisfactory solutions to model unknown nonlinear dynamic systems. However, there is no valid confidence evaluation about the model prediction of neural networks. In this paper, Gaussian process regression (GPR) complementarily advantages dynamic data reconciliation (DDR) to form a novel data-driven filtering scheme named GPR–DDR. DDR is served as an alternative filter, which is suitable for a broader class of process models compared with Kalman filters, while GPR is employed to predict system outputs with their associate uncertainty, which makes parameters of the DDR needless to online tune and adaptive for varying inputs. The effectiveness of GPR–DDR is demonstrated by its implementations on a classical mathematical example and a dynamic chemical process. The simulation results show that the proposed method can further improve the output response and is robust to changes of the noise level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  2. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng. 83, 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  3. Julier S.J., Uhlmann J.K.: New extension of the Kalman filter to nonlinear systems. In: Signal processing, sensor fusion, and target recognition, pp. 182–193 (1997)

  4. Nørgaard, M., Poulsen, N.K., Ravn, O.: New developments in state estimation for nonlinear systems. Automatica 36, 1627–1638 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jiang, T., Wang, J., He, Y., Wang, Y.: Design of the modified fractional central difference Kalman filters under stochastic colored noises. ISA Trans. 127, 487–500 (2022)

    Article  Google Scholar 

  6. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Trans. Autom. Control 54, 1254–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, C., Gao, Z., Miao, Y., Kan, T.: Study on initial value problem for fractional-order cubature Kalman filters of nonlinear continuous-time fractional-order systems. Nonlinear Dyn. 105, 2387–2403 (2021)

    Article  Google Scholar 

  8. Bai, S., Thibault, J., McLean, D.D.: Dynamic data reconciliation: alternative to Kalman filter. J. Process Control 16, 485–498 (2006)

    Article  Google Scholar 

  9. Bai, S.H., McLean, D.D., Thibault, J.: Enhancing controller performance via dynamic data reconciliation. Can. J. Chem. Eng. 83, 515–526 (2005)

    Article  Google Scholar 

  10. Bai, S., McLean, D.D., Thibault, J.: Simultaneous measurement bias correction and dynamic data reconciliation. Can. J. Chem. Eng. 85, 111–117 (2007)

    Article  Google Scholar 

  11. Zhang, Z., Chen, J.: Dynamic data reconciliation for enhancing performance of minimum variance control in univariate and multivariate systems. Ind. Eng. Chem. Res. 55, 10990–11002 (2016)

    Article  Google Scholar 

  12. Zhang, Z., Chen, J.: Enhancing performance of generalized minimum variance control via dynamic data reconciliation. J. Franklin Inst. 356, 8829–8854 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, G., Zhang, Z., Zhao, S., Zhu, W., Chen, C.: Dynamic data reconciliation to decrease the effect of measurement noise on controller performance assessment. IEEJ Trans. Electr. Electron. Eng. 15, 714–722 (2020)

    Article  Google Scholar 

  14. Ren, M., Zhang, W., Chen, J., Shi, P., Yan, G.: Performance assessment for non-Gaussian systems by minimum entropy control and dynamic data reconciliation. J. Franklin Inst. 359, 3930–3950 (2022)

    Article  MATH  Google Scholar 

  15. Zhu, W., Zhang, Z., Armaou, A., Hu, G., Zhao, S., Huang, S.: Dynamic data reconciliation to improve the result of controller performance assessment based on GMVC. ISA Trans. 117, 288–302 (2021)

    Article  Google Scholar 

  16. Zhu, W., Zhang, Z., Chen, J., Zhao, S., Huang, S.: Dynamic data reconciliation to enhance the performance of feedforward/feedback control systems with measurement noise. J. Process Control 108, 12–24 (2021)

    Article  Google Scholar 

  17. Xia, T., Zhang, Z., Hong, Z., Huang, S.: Design of fractional order PID controller based on minimum variance control and application of dynamic data reconciliation for improving control performance. ISA Trans. (2022). https://doi.org/10.1016/j.isatra.2022.06.041

    Article  Google Scholar 

  18. Hu, G., Zhang, Z., Chen, J., Zhang, Z., Armaou, A., Yan, Z.: Elman neural networks combined with extended Kalman filters for data-driven dynamic data reconciliation in nonlinear dynamic process systems. Ind. Eng. Chem. Res. 60, 15219–15235 (2021)

    Article  Google Scholar 

  19. Jiang, B., Liu, Y., Geng, H., Wang, Y., Zeng, H., Ding, J.: A holistic feature selection method for enhanced short-term load forecasting of power system. IEEE Trans. Instrum. Meas. (2022). https://doi.org/10.1109/TIM.2022.3219499

    Article  Google Scholar 

  20. Song, F., Li, Y., Cheng, W., Dong, L., Li, M., Li, J.: An improved Kalman filter based on long short-memory recurrent neural network for nonlinear radar target tracking. Wirel. Commun. Mob. Comput. 2022, 8280428 (2022)

    Article  Google Scholar 

  21. Chen, J., Zhang, Y., Li, W., Cheng, W., Zhu, Q.: State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter. J. Energy Stor. 55, 105396 (2022)

    Article  Google Scholar 

  22. Revach, G., Shlezinger, N., Ni, X., Escoriza, A.L., Van Sloun, R.J., Eldar, Y.C.: KalmanNet: neural network aided Kalman filtering for partially known dynamics. IEEE Trans. Sign. Process. 70, 1532–1547 (2022)

    Article  MathSciNet  Google Scholar 

  23. Neal, R.M.: Bayesian Learning for Neural Networks. Springer Science & Business Media, New York (2012)

    Google Scholar 

  24. Williams, C.K., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  25. Burke, J., King, S.: Edge tracing using Gaussian process regression. IEEE Trans. Image Process. 31, 138–148 (2021)

    Article  Google Scholar 

  26. Deringer, V.L., Bartók, A.P., Bernstein, N., Wilkins, D.M., Ceriotti, M., Csányi, G.: Gaussian process regression for materials and molecules. Chem. Rev. 121, 10073–10141 (2021)

    Article  Google Scholar 

  27. Gs, V., Vs, H.: Prediction of bus passenger traffic using Gaussian process regression. J. Sign. Process. Syst. 95(2–3), 281–292 (2023)

    Google Scholar 

  28. Liu, D., Tang, M., Fu, J.: Robust adaptive trajectory tracking for wheeled mobile robots based on Gaussian process regression. Syst. Control Lett. 163, 105210 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. da Silva Lima, G., Bessa, W.M.: Sliding mode control with Gaussian process regression for underactuated mechanical systems. IEEE Lat. Am. Trans. 20, 963–969 (2022)

    Article  Google Scholar 

  30. Deng, Z., Hu, X., Lin, X., Che, Y., Xu, L., Guo, W.: Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. Energy 205, 118000 (2020)

    Article  Google Scholar 

  31. Wang, J., Deng, Z., Yu, T., Yoshida, A., Xu, L., Guan, G., Abudula, A.: State of health estimation based on modified Gaussian process regression for lithium-ion batteries. J. Energy Stor. 51, 104512 (2022)

    Article  Google Scholar 

  32. Bernardo, D., Hagras, H., Tsang, E.: A genetic type-2 fuzzy logic based system for the generation of summarised linguistic predictive models for financial applications. Soft. Comput. 17, 2185–2201 (2013)

    Article  Google Scholar 

  33. Cacciola M., Pellicanò D., Megali G., Lay-Ekuakille A., Versaci M., Morabito F.: Aspects about air pollution prediction on urban environment. In: Proceedings of the 4th IMEKO TC19 symposium on environmental instrumentation and measurements, pp. 15–20 (2013)

  34. Yang, S., Zhang, J.: An adaptive human–machine control system based on multiple fuzzy predictive models of operator functional state. Biomed. Sign. Process. Control 8, 302–310 (2013)

    Article  Google Scholar 

  35. Zhang, C., Xie, K., He, Y., Wang, Q., Wu, M.: An improved stability criterion for digital filters with generalized overflow arithmetic and time-varying delay. IEEE Trans. Circuits Syst. II Express Briefs 67, 2099–2103 (2019)

    Google Scholar 

  36. Chen Z.: Gaussian process regression methods and extensions for stock market prediction. Ph.D. Thesis: University of Leiceste (2017)

  37. Renson, L., Sieber, J., Barton, D.A., Shaw, A., Neild, S.: Numerical continuation in nonlinear experiments using local Gaussian process regression. Nonlinear Dyn. 98, 2811–2826 (2019)

    Article  MATH  Google Scholar 

  38. Chen, Z., Wang, B.: How priors of initial hyperparameters affect Gaussian process regression models. Neurocomputing 275, 1702–1710 (2018)

    Article  Google Scholar 

  39. Liu, K., Li, Y., Hu, X., Lucu, M., Widanage, W.D.: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-Ion batteries. IEEE Trans. Industr. Inf. 16, 3767–3777 (2020)

    Article  Google Scholar 

  40. Cheng, M., Jiao, L., Yan, P., Feng, L., Qiu, T., Wang, X., Zhang, B.: Prediction of surface residual stress in end milling with Gaussian process regression. Measurement 178, 109333 (2021)

    Article  Google Scholar 

  41. Pham, D.T., Karaboga, D.: Training Elman and Jordan networks for system identification using genetic algorithms. Artif. Intell. Eng. 13, 107–117 (1999)

    Article  Google Scholar 

  42. Schmidt, A.D., Ray, W.H.: The dynamic behavior of continuous polymerization reactors—I: isothermal solution polymerization in a CSTR. Chem. Eng. Sci. 36, 1401–1410 (1981)

    Article  Google Scholar 

  43. Shi W.: Development of data-based modeling, data reconciliation, controller design and performance assessment using correntropy information. Ph.D. Thesis: Chung Yuan Christian University (2012)

  44. Hu, G., Xu, L., Zhang, Z.: Correntropy based Elman neural network for dynamic data reconciliation with gross errors. J. Taiwan Inst. Chem. Eng. 140, 104568 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 62071363) and the Key R&D program of Shaanxi Province (2021LLRH-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luping Xu or Zhengjiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Xu, L. & Zhang, Z. Gaussian process regression combined with dynamic data reconciliation for improving the performance of nonlinear dynamic systems. Nonlinear Dyn 111, 15145–15163 (2023). https://doi.org/10.1007/s11071-023-08624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08624-2

Keywords

Navigation