Skip to main content
Log in

Spider-inspired anti-impact hydraulics-based structure for on-orbit capture

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An ever-growing number of malfunctioning satellites and space debris now pose a severe threat to space activities, such that on-orbit capture of non-cooperative targets has become an urgent task. During on-orbit capture missions, considering the uncertainty of the targets’ motion, targets would inevitably exert a mechanical impulse on the satellite platform that could seriously compromise its stability. Thus, an anti-impact structure is required to be incorporated into the capture mechanism of the satellite platform to protect it. However, conventional bio-inspired quadrilateral shape (BIQS) anti-impact structure requires large installation space (up to six meters) owing to its weak nonlinear damping property and strong coupling of damping and stiffness properties arising from geometric nonlinearity, leading to severe stability and loading issues. To solve these issues, a spider-inspired anti-impact hydraulic-based (SIAH) structure is proposed for the first time in this paper. Concretely, the linear damper of the BIQS structure is replaced by a hydraulic damper, converting geometric nonlinearity into component nonlinearity. In view of the practical working conditions of on-orbit missions, i.e., the movement of the satellite platform and the mass of the capture target, the SIAH structure has the potential to achieve much better anti-impact performance and stability with an almost optimal size of the structure. All of these benefits result from nonlinear damping, nonlinear stiffness and weak coupling of damping and stiffness properties owing to the application of the hydraulic damper. Specifically, the nonlinear damping and nonlinear stiffness are able to improve the anti-impact performance of the structure without sacrificing the stability, and the weak coupling of damping and stiffness properties can solve the competing effects of different parameters in the designing process. Moreover, experiments utilizing the air-bearing table are carried out, eliminating complex friction incurred by use of the rail in previous experiments. The experiments generate consistent results and verify the correctness of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aglietti, G.S., Taylor, B., Fellowes, S., Ainley, S., Tye, D., Cox, C., Zarkesh, A., Mafficini, A., Vinkoff, N., Bashford, K., Salmon, T., Retat, I., Burgess, C., Hall, A., Chabot, T., Kanani, K., Pisseloup, A., Bernal, C., Chaumette, F., Pollini, A., Steyn, W.H.: RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris. Aeronaut. J. 124(1271), 1–23 (2020)

    Google Scholar 

  2. He, J., Zheng, H.C., Gao, F., Zhang, H.B.: Dynamics and control of a 7-DOF hybrid manipulator for capturing a non-cooperative target in space. Mech. Mach. Theory 140(3), 83–103 (2019)

    Google Scholar 

  3. Cyril, X., Jaar, G.J.: Postcapture dynamics of a spacecraft-manipulator-payload system. J. Guid. Control. Dyn. 23(1), 95–100 (2000)

    Google Scholar 

  4. Flores, A.A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Google Scholar 

  5. Luo, J.J., Wei, C.S., Dai, H.H., Yuan, J.P.: Robust LS-SVM-based adaptive constrained control for a class of uncertain nonlinear systems with time-varying predefined performance. Commun. Nonlinear Sci. Numer. Simul. 56, 561–587 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Wei, C.S., Luo, J.J., Dai, H.H., Bian, Z.L., Yuan, J.P.: Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identifications. Acta Astronaut. 146, 228–242 (2018)

    Google Scholar 

  7. Park, W.H.: Mass-spring-damper response to repetitive impact. J. Eng. Industry 89(4), 587–596 (1967)

    Google Scholar 

  8. Zhang, Z., Aglietti, G.S., Zhou, W.Y.: Microvibrations induced by a cantilevered wheel assembly with a soft-suspension system. Am. Inst. Aeronaut. Astronaut. J. 49(5), 1067–1079 (2011)

    Google Scholar 

  9. Kamesh, D., Pandiyan, R., Ghosal, A.: Passive vibration isolation of reaction wheel disturbances using a low frequency flexible space platform. J. Sound Vib. 331(6), 1310–1330 (2012)

    Google Scholar 

  10. Lu, Z., Wang, Z.X., Zhou, Y., Lu, X.L.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)

    Google Scholar 

  11. Liu, C.C., Jing, X.J., Daley, S., Li, F.M.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015)

    Google Scholar 

  12. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3), 678–689 (2007)

    Google Scholar 

  13. Cao, Q.J., Han, Y.W., Liang, T.W., Wiercigroch, M., Piskarev, S.: Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator. Int. J. Bifurc. Chaos 24(1), 1430005 (2014)

    MATH  Google Scholar 

  14. Wang, L., Liu, Z.Y., Abdelkefi, A., Wang, Y.K., Dai, H.L.: Nonlinear dynamics of cantilevered pipes conveying fluid: towards a further understanding of the effect of loose constraints. Int. J. Non-Linear Mech. 95, 19–29 (2017)

    Google Scholar 

  15. Xie, D., Xu, M., Dai, H.H., Dowell, E.H.: Observation and evolution of chaos for a cantilever plate in supersonic flow. J. Fluids Struct. 50, 271–291 (2014)

    Google Scholar 

  16. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58(3), 469–485 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Jing, X.J.: Nonlinear characteristic output spectrum for nonlinear analysis and design. IEEE-ASME Trans. Mechatron. 19(1), 171–183 (2014)

    Google Scholar 

  18. Jing, X.J., Lang, Z.Q., Billings, S.A.: Output frequency properties of nonlinear systems. Int. J. Non-Linear Mech. 45(7), 681–690 (2010)

    Google Scholar 

  19. Zhu, S.J., Zheng, Y.F., Fu, Y.M.: Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring. J. Sound Vib. 271(1–2), 15–24 (2004)

    Google Scholar 

  20. Xiao, Z.L., Jing, X.J., Cheng, L.: The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations. J. Sound Vib. 332(5), 1335–1354 (2013)

    Google Scholar 

  21. Choi, K.M., Jung, H.J., Cho, S.W., Lee, I.W.: Application of smart passive damping system using MR damper to highway bridge structure. J. Mech. Sci. Technol. 21(6), 870–874 (2007)

    Google Scholar 

  22. Murakami, T., Sakai, M., Nakano, M.: Study on the development of passive MR damper with displacement-dependent damping characteristics. J. Fluid Sci. Technol. 5, 86–97 (2010)

    Google Scholar 

  23. Sato, Y., Umebara, S.: Power-saving magnetization for magnetorheological fluid control using a combination of permanent magnet and electromagnet. IEEE Trans. Magn. 48(11), 3521–3524 (2012)

    Google Scholar 

  24. Zhu, X.C., Jing, X.J., Cheng, L.: A magnetorheological fluid embedded pneumatic vibration isolator allowing independently adjustable stiffness and damping. Smart Mater. Struct. 20(8), 085025 (2011)

    Google Scholar 

  25. Zhu, X.C., Jing, X.J., Cheng, L.: Systematic design of a magneto-rheological fluid embedded pneumatic vibration isolator subject to practical constraints. Smart Mater. Struct. 21(3), 035006 (2012)

    Google Scholar 

  26. Orban, F.: Damping of materials and members in structures. J. Phys: Conf. Ser. 268, 012022 (2011)

    Google Scholar 

  27. Bian, J., Jing, X.J.: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure. Mech. Syst. Signal Process. 125, 21–51 (2019)

    Google Scholar 

  28. Ferri, A.A., Whiteman, W.E.: Free response of a system with negative viscous damping and displacement-dependent dry friction damping. J. Sound Vib. 306(3–5), 400–418 (2007)

    Google Scholar 

  29. Li, F.M., Song, Z.G., Sun, C.C.: Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow. Acta Mech. Solida Sin. 28(6), 639–646 (2015)

    Google Scholar 

  30. Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013)

    Google Scholar 

  31. Bronowicki, A.J., Abhyankar, N.S., Griffin, S.F.: Active vibration control of large optical space structures. Smart Mater. Struct. 8(6), 740–752 (1999)

    Google Scholar 

  32. Davis, L., Hyland, D., Yen, G., Das, A.: Adaptive neural central for space structure vibration suppression. Smart Mater. Struct. 8(6), 753–766 (1999)

    Google Scholar 

  33. Li, F.M., Yao, G., Zhang, Y.M.: Active control of nonlinear forced vibration in a flexible beam using piezoelectric material. Mech. Adv. Mater. Struct. 23(3), 311–317 (2016)

    Google Scholar 

  34. Li, F.M., Liu, C.C.: Vibration analysis and active control for frame structures with piezoelectric rods using spectral element method. Arch. Appl. Mech. 85(5), 675–690 (2015)

    Google Scholar 

  35. Neat, G.W., Melody, J.W., Lurie, B.J.: Vibration attenuation approach for spaceborne optical interferometers. IEEE Trans. Control Syst. Technol. 6(6), 689–700 (1998)

    Google Scholar 

  36. Vaillon, L., Petitjean, B., Frapard, B., Lebihan, D.: Active isolation in space truss structures: from concept to implementation. Smart Mater. Struct. 8(6), 781–790 (1999)

    Google Scholar 

  37. Wu, K., Li, G., Hu, H., Wang, L.J.: Active low-frequency vertical vibration isolation system for precision measurements. Chinese J. Mech. Eng. 30(1), 164–169 (2017)

    Google Scholar 

  38. Jing, X.J.: The X-structure/mechanism approach to beneficial nonlinear design in engineering. Appl. Math. Mech. 43(7), 979–1000 (2022)

    Google Scholar 

  39. Sun, X.T., Jing, X.J., Xu, J., Cheng, L.: Vibration isolation via a scissor-like structured platform. J. Sound Vib. 333(9), 2404–2420 (2014)

    Google Scholar 

  40. Wu, Z.J., Jing, X.J., Bian, J., Li, F.M., Allen, R.: Vibration isolation by exploring bio-inspired structural nonlinearity. Bioinspir. Biomimetics 10(5), 056015 (2015)

    Google Scholar 

  41. Xue, B.C.: Simulation study on scissor-like element vibrations. Master’s thesis, The Hong Kong Polytechnic University (2013)

  42. Wang, Y., Jing, X.J., Guo, Y.Q.: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints. Nonlinear Dyn. 95, 445–464 (2019)

    Google Scholar 

  43. Wang, Y., Jing, X.J.: Nonlinear stiffness and dynamical response characteristics of an asymmetric x-shaped structure. Mech. Syst. Signal Process. 125, 142–169 (2019)

    Google Scholar 

  44. Wu, Z.J., Liu, W.Y., Li, F.M., Zhang, C.Z.: Band-gap property of a novel elastic metamaterial beam with x-shaped local resonators. Mech. Syst. Signal Process. 134, 106357 (2019)

    Google Scholar 

  45. Jiang, G.Q., Jing, X.J., Guo, Y.Q.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLD stiffness properties. Mech. Syst. Signal Process. 138, 106552 (2020)

    Google Scholar 

  46. Liu, C.C., Jing, X.J., Li, F.M.: Vibration isolation using a hybrid lever-type isolation system with an X-shape supporting structure. Int. J. Mech. Sci. 98, 169–177 (2015)

    Google Scholar 

  47. Feng, X., Jing, X.J., Xu, Z.D., Guo, Y.P.: Bio-inspired anti-vibration with nonlinear inertia coupling. Mech. Syst. Signal Process. 124, 562–595 (2019)

    Google Scholar 

  48. Liu, C.C., Jing, X.J., Chen, Z.B.: Band stop vibration suppression using a passive x-shape structured lever-type isolation system. Mech. Syst. Signal Process. 68, 342–353 (2016)

  49. Feng, X., Jing, X.J.: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Process. 117, 786–812 (2019)

    Google Scholar 

  50. Dai, H.H., Jing, X.J., Wang, Y., Yue, X.K., Yuan, J.P.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Process. 105, 214–240 (2018)

    Google Scholar 

  51. Dai, H.H., Jing, X.J., Sun, C., Wang, Y., Yue, X.K.: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture. Mech. Syst. Signal Process. 109, 111–133 (2018)

    Google Scholar 

  52. Dai, H.H., Cao, X.Y., Jing, X.J., Wang, X., Yue, X.K.: Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment. Mech. Syst. Signal Process. 142, 106785 (2020)

    Google Scholar 

  53. Nicholas, L.J.: Debris removal: An opportunity for cooperative research? In: Space Situational Awareness Conference. National Aeronautics and Space Administration, London (2007)

  54. Zhang, Y.X., Chen, H., Guo, K.H., Zhang, X.J., Li, S.B.E.: Electro-hydraulic damper for energy harvesting suspension: modeling, prototyping and experimental validation. Appl. Energy 199(45), 1–12 (2017)

    Google Scholar 

  55. Sun, X.T., Jing, X.J.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016)

    Google Scholar 

  56. Jing, X.J., Zhang, L.L., Jiang, G.Q., Feng, X., Guo, Y.Q., Xu, Z.D.: Critical factors in designing a class of X-shaped structures for vibration isolation. Eng. Struct. 199, 109659 (2019)

    Google Scholar 

  57. Jing, X.J., Lang, Z.Q., Billings, S.A.: Nonlinear influence in the frequency domain: alternating series. Syst. Control Lett. 60(5), 295–309 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by Chinese NSF (No. 11972026), the CAS Youth Innovation Promotion Association and the General Research Fund of HK RGC (15206717).

Author information

Authors and Affiliations

Authors

Contributions

ZC performed investigation. XY performed supervision and writing—review and editing. XJ performed validation and data curation. HD contributed to conceptualization and methodology.

Corresponding author

Correspondence to Honghua Dai.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Components

Parameters

Symbol

Initial valve

Unit

Initial  state

Mass  of  target

\({{\varvec{m}}}_{1}\)

20/2000

kg

 

Mass  of  satellite  platform

\({{\varvec{m}}}_{2}\)

2500

kg

Stiffness  structure

Stiffness  of  spring

\({\varvec{k}}\)

1200

N/m

 

Number  of  layers

\({\varvec{n}}\)

3

-

 

Initial  assembly  angle

\(\theta _{0}\)

\(\pi /6\)

rad

 

Length  of  rods

\({\varvec{I}}\)

\({0.\, 5}\)

m

 

Rotation  friction

c

0.2

kg \(\bullet \)   m/s

 

Pressure  of  minor  cavity  1

\({\varvec{P}}_ {c1}\)

-

MPa

 

Pressure  of  minor  cavity  2

\({\varvec{P}}_{c2}\)

MPa

 

Section  area  of  major  cavity

\(A_n\)

1325.  75

\(\hbox {mm}^{2}\)

 

Section  area  of  piston  ring

\(A_u\)

559.863

\(\hbox {{mm}}^{2}\)

 

Section  area  of  piston

\({\varvec{A}}_m\)

814.  332

\(\hbox {{mm}}^{2}\)

 

Section  area  of  piston  rod

\({\varvec{A}}_r\)

154.469

\(\hbox {{mm}}^{2}\)

 

Length  of  external  pipe

\({\varvec{L}}_\textrm{pipe}\)

750

mm

 

Diameter  of  minor  tube

\(d_{\hbox {m}}\)

32.2

mm

Hydraulic  damper

Diameter  of  piston  rod

\(d_ {r}\)

14

mm

 

Diameter  of  external  pipe

\({\varvec{d}}_\textrm{pipe}\)

50

mm

 

Diameter  of  check  valve  i

\({\varvec{d}}_ {{valve}\_{i}}\)

28

mm

 

Stiffness  of  check  valve  i

\({\varvec{K}}_{\textrm{valve}\_{i}}\)

750

N/mm

 

Stiffness  of  spring

\(k_s\)

1200

N/mm

 

Initial  tensile  of  spring

\({\varvec{y}}_s\)

  
 

Dynamic viscosity of aerospace lubricants

\(\mu \)

0.  521

\({N\, \bullet \, s/m}^{2}\)

 

Density  of  aerospace  lubricants

\(\rho \)

\({1.\, 892X10}^{3}\)

\({{\hbox {kg}}/{\hbox {m}}}^{2}\)

 

Discharge  coefficient

\(C_{df}\)

0.  7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yue, X., Jing, X. et al. Spider-inspired anti-impact hydraulics-based structure for on-orbit capture. Nonlinear Dyn 111, 14925–14956 (2023). https://doi.org/10.1007/s11071-023-08621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08621-5

Keywords

Navigation