Skip to main content
Log in

Predefined-time fractional-order time-varying sliding mode control and its application in hypersonic vehicle guidance law

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a predefined-time fractional-order time-varying sliding mode controller is proposed for a class of second-order systems. The state errors are converged to zero at a predefined time, which can be set in advance by an explicit parameter. The stability is proved by Lyapunov second method and the predefined-time convergence is directly proved by solving the analytical formula for the state errors with squeeze theorem and mean value theorem. The sliding mode arrival phase caused by the initial state errors is eliminated in the designed controller, which has stronger robustness. Compared with the integer-order ones, the predefined-time fractional-order time-varying sliding mode controller proposed in this paper has stronger anti-interference ability. The controller is applied to the design of terminal guidance law for hypersonic vehicles. The simulation results show that the designed guidance law can ensure high precision in terms of impact angle error and miss distance under severe interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Paul, L.M., Vincent, L.R., Luat, T.N., et al.: NASA hypersonic flight demonstrators-overview, status, and future plans. Acta Astronaut. 55(3), 619–630 (2004)

    Google Scholar 

  2. Fidan, B., Mirmirani, M., Ioannou, P. A.: Flight dynamics and control of air-breathing hypersonic vehicles: review and new directions. In: 12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, USA, AIAA 2003-7081: 1–24 (2003)

  3. Zhao, Y., Sheng, Y.Z., Liu, X.D.: Analytical impact time and angle guidance via time-varying sliding mode technique. ISA Trans. 62, 164–176 (2016)

    Google Scholar 

  4. Zhao, Y., Sheng, Y.Z., Liu, X.D.: Sliding mode control based guidance law with impact angle constraint. Chin. J. Aeronaut. 27(1), 145–152 (2014)

    Google Scholar 

  5. Kumar, S. R., Ghose, D.: Sliding mode control based guidance law with impact time constraints. In: 2013 American Control Conference, Washington, DC, USA, 5760–5765 (2013)

  6. Harl, N., Balakrishnan, S.N.: Impact time and angle guidance with sliding mode control. IEEE Trans. Control Syst. Technol. 20(6), 1436–1449 (2012)

    Google Scholar 

  7. Hou, M., Duan, G.: Integrated guidance and control of homing missiles against ground fixed targets. Chin. J. Aeronaut. 21(2), 162–168 (2008)

    Google Scholar 

  8. Emelyanov, S.V.: Method for designing complex control algorithms using an error and its first time-derivative only. Autom. Remote Control 18(10), 13–17 (1957)

    Google Scholar 

  9. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Emelyanov, S.V., Fedotova, A.L.: Design of a static tracking systems with variable structure. Autom. Remote Control 23(10), 1223–1235 (1962)

    Google Scholar 

  11. Sarptürk, S.Z., Kaynak, O.: New control algorithms based on the sliding mode control methodology. IFAC Proc. Vol. 20(4), 67–71 (1987)

    MATH  Google Scholar 

  12. Tang, Y.: Terminal sliding mode control for rigid robots based on passivity. IFAC Proc. Vol. 29(1), 241–246 (1996)

    Google Scholar 

  13. Feng, Y., Yu, X.H., Man, Z.H.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Yu, X.H., Man, Z.H., Feng, Y., et al.: Nonsingular terminal sliding mode control of a class of nonlinear dynamical systems. IFAC Proc. Vol. 35(1), 161–165 (2002)

    Google Scholar 

  15. Polyakov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Franklin Inst. 351(4), 1831–1865 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Sánchez-Torres, J. D., Sanchez, E. N., Loukianov, A. G.: Predefined-time stability of dynamical systems with sliding modes. In: American Control Conference (ACC), Chicago, IL, USA: IEEE Press, 5842–5846 (2015)

  17. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 35(Supplement), i1–i29 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Sánchez-Torres, J.D., Gómez-Gutiérrez, D., López, E., et al.: A class of predefined-time stable dynamical systems. IMA J. Math. Control Inf. 35, i1–i29 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Sánchez-Torres, J. D., Defoort, M., Muñoz-Vázquez, A.J.: A Second Order Sliding Mode Controller with Predefined-Time Convergence. In: 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 5–7 (2018)

  20. Liang, C.D., Ge, M.F., Liu, Z.W., et al.: A novel sliding surface design for predefined-time stabilization of Euler-Lagrange systems. Nonlinear Dyn. 106, 445–458 (2021)

    Google Scholar 

  21. Song, Z.K., Sun, K.B.: Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2540–2548 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Moussa, L., Mohamed, C.: Robust adaptive global time-varying sliding-mode control for finite-time tracker design of quadrotor drone subjected to Gaussian random parametric uncertainties and disturbances. Int. J. Control Autom. Syst. 19(6), 2213–2223 (2021)

    Google Scholar 

  23. Mohamed, B., Hamdi, G., Tarak, D.: A global time-varying sliding-mode control for the tracking problem of uncertain dynamical systems. ISA Trans. 97(C), 155–170 (2020)

    Google Scholar 

  24. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Google Scholar 

  25. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  26. Bertram, R.: Fractional Calculus and Its Applications. Springer, Berlin, Heidelberg (1975)

    MATH  Google Scholar 

  27. Mandelbrot, B.B.: The Fractal Geometry of Naturel. Macmillan, New York (1983)

    Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Elsevier Science and Technology Books, Amsterdam (1999)

    MATH  Google Scholar 

  29. Fractional-Order Systems and \(PI^{\lambda }D^{\mu }\)-Controllers. IEEE Transactions on Automatic Control, 44(1), 208–214 (1999)

  30. Chen, Y.Q., Dou, H.F., Vinagre, B.M.: A robust tuning method for fractional order PI controllers. IFAC Proc. Vol. 39(11), 22–27 (2006)

    Google Scholar 

  31. Chen, Y.Q., Ahn, H.S., Podlubny, I.: Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process. 86(10), 2611–2618 (2006)

    MATH  Google Scholar 

  32. Chen, Y.Q., Ahn, H.S., Xue, D.Y.: Robust controllability of interval fractional order linear time invariant systems. Signal Process. 86(10), 2794–2802 (2006)

    MATH  Google Scholar 

  33. Xue, D.Y., Chen, Y.Q.: Modeling, Analysis and Design of Control Systems in MALLAB and Simulink. World Scientific Press, Singapore (2014)

    Google Scholar 

  34. Xue, D.Y.: Fractional-Order Control Systems: Fundamentals and Numerical Implementations. De Gruyter, Berlin (2017)

    MATH  Google Scholar 

  35. Calderón, A.J., Vinagre, B.M., FeliÃ, V.: Fractional Sliding Mode Control of a DC-DC Buck Converter with Application to DC Motor Drives. In: ICAR 2003: The 11th International Conference on Advanced Robotics, pp. 252–257 (2003)

  36. Mehmet Ö, E.: Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm. Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF Direct-Drive Robot Arm, 38(6), 1561–1570 (2008)

  37. Delavari, H., Ghaderi, R., Ranjbar, A., et al.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Mohammad, P.A.: Reply to “Comments on“ Fuzzy fractional order sliding mode controller for nonlinear systems” [Commun Nonlinear Sci Numer Simulat 15 (2010) 963–978]. Communications in Nonlinear Science and Numerical Simulation 17(10), 4010–4014 (2012)

  39. Sara, D., Hamid, R.M.: Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun. Nonlinear Sci. Numer. Simul. 17(1), 367–377 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Moussa, L., Sahbi, B., Mohamed, D., et al.: Fixed-time fractional-order global sliding mode control for nonholonomic mobile robot systems under external disturbances. Fractal Fract. 6(4), 117 (2022)

    Google Scholar 

  41. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Boulaaras, S.: Predefined-time convergence in fractional-order systems. Chaos Solitons Fractals 143, 110571 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M.: Second-order predefined-time sliding-mode control of fractional-order systems. Asian J. Control 24(1), 74–82 (2022)

    MathSciNet  Google Scholar 

  43. Huang, S.H., Wang, J., Xiong, L.Y., et al.: Distributed predefined-time fractional-order sliding mode control for power system with prescribed tracking performance. IEEE Trans. Power Syst. 37(3), 2233–2246 (2022)

    Google Scholar 

  44. Huang, S.H., Wang, J., Xiong, L.Y., et al.: Distributed predefined-time fractional-order sliding mode control for power system with prescribed tracking performance. IEEE Trans. Power Syst. 37(3), 2233–2246 (2022)

    Google Scholar 

  45. Ye, D., Zou, A.M., Sun, Z.W.: Predefined-time predefined-bounded attitude tracking control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 58(1), 464–472 (2022)

    Google Scholar 

  46. Yang, Z.B., Ding, Q.F., Sun, X.D., et al.: Fractional-order sliding mode control for a bearingless induction motor based on improved load torque observer. J. Franklin Inst. 358(7), 3701–3725 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Sara, D., Hamid, M.: Fractional terminal sliding mode control design for a class of dynamical systems with uncertainty. Commun. Nonlinear Sci. Numer. Simul. 17(1), 367–377 (2011)

    MathSciNet  MATH  Google Scholar 

  48. Mehmet, Ö.E.: A sufficient condition for checking the attractiveness of a sliding manifold in fractional order sliding mode control. Asian J. Control 14(4), 1118–1122 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Zhang, B.T., Pi, Y.G., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51(5), 649–656 (2012)

    Google Scholar 

  50. Ali, F., Amir, H.H.: Design of fractional order fuzzy controller based on sliding mode control for robotic flexible joint manipulators. Appl. Mech. Mater. 109, 323–332 (2011)

    Google Scholar 

  51. Sheng, Y.Z., Bai, W.J., Xie, Y.W.: Fractional-order \(PI^{\lambda }D \) sliding mode control for hypersonic vehicles with neural network disturbance compensator. Nonlinear Dyn. 103, 849–863 (2021)

    Google Scholar 

  52. Osman, E., Tokat, S.: The design of a fractional-order sliding mode controller with a time-varying sliding surface. Trans. Inst. Meas. Control 42(16), 3196–3215 (2020)

    Google Scholar 

  53. Sheng, Y.Z., Zhang, Z., Xia, L.: Fractional-order sliding mode control based guidance law with impact angle constraint. Nonlinear Dyn. 106, 425–444 (2021)

    Google Scholar 

  54. Kim, M., Grider, K.V.: Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Trans. Aerosp. Electron. Syst. 9(6), 852–859 (1973)

    Google Scholar 

  55. Zhou, X.H., Wang, W.H., Liu, Z.H., et al.: Impact angle constrained three-dimensional integrated guidance and control based on fractional integral terminal sliding mode control. IEEE Access 7, 126857–126870 (2019)

    Google Scholar 

  56. Liu, S., Yan, B., Zhang, X., et al.: Fractional-order sliding mode guidance law for intercepting hypersonic vehicles. Aerospace 9(2), 53 (2022)

    Google Scholar 

  57. Yang, Y., Zhang, H.H.: Fractional Calculus with Its Applications in Engineering and Technology. Morgan & Claypool Publishers, San Rafael (2019)

    MATH  Google Scholar 

  58. Kai, D.: The mean value theorems and a Nagumo-type uniqueness theorem for Caputoáfractional calculus. Fract. Calc. Appl. Anal. 15(2), 304–313 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Slotine, J.J., Sastry, S.S.: Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. Int. J. Control 38(2), 465–492 (1983)

    MATH  Google Scholar 

  60. Wen, T.G., Zeng, X.Y., Circi, C., Gao, Y.: Hop reachable domain on irregularly shaped asteroids. J. Guid. Control Dyn. 43(7), 1269–1283 (2020)

    Google Scholar 

  61. Zeng, X.Y., Wen, T.G., Yu, Y., Christian, C.: Potential hopreachable domain over surfaces of small bodies. Aerosp. Sci. Technol. 112, 106600 (2021)

    Google Scholar 

  62. U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric Administration, NASA, U.S. Air Force, Washington, DC (1976)

  63. Wang, S., Wang, W.H., Xiong, S.F.: Impact angle constrained three-dimensional integrated guidance and control for STT missile in the presence of input saturation. ISA Trans. 64, 151–160 (2016)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the Editors and Reviewers for their valuable comments.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Gan, J. & Xia, L. Predefined-time fractional-order time-varying sliding mode control and its application in hypersonic vehicle guidance law. Nonlinear Dyn 111, 14177–14198 (2023). https://doi.org/10.1007/s11071-023-08602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08602-8

Keywords

Navigation