Skip to main content
Log in

Gram-type, breather and hybrid solutions for the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Two-layer fluid models are used for investigating certain nonlinear phenomena in fluid mechanics, medical science and thermodynamics. This paper investigates the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid. Gram-type solutions are derived via the Kadomtsev-Petviashvili hierarchy reduction. Based on the Gram-type solutions, three-breather solutions and three kinds of hybrid the solutions that behave as the interactions among the V-shaped soliton, kink soliton and breather are derived. Three-breather solutions describe that a breather splits into two breathers or two breathers fuse into a breather. For the three kinds of the hybrid solutions, asymptotic analyses indicate that: (1) the V-shaped soliton is constructed via the interaction between two kink solitons; (2) the V-shaped soliton reduces to a kink soliton at certain conditions; (3) certain interaction results in a decrease (or increase) in the constant background of the V-shaped soliton and kink soliton. Based on the asymptotic analysis for a set of the hybrid solutions, we find the hybrid solutions which describe that a breather splits into two breathers while the breathers are connected to the V-shaped soliton. Furthermore, we show the hybrid solutions which describe that three breathers fuse into the V-shaped soliton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

References

  1. Ha, J., Choi, Y.Y., Kim, Y., Lee, J.N., Choi, J.I.: Two-layer hydrodynamic network model for redox flow battery stack with flow field design. Int. J. Heat Mass Tran. 201, 123626 (2023)

    Google Scholar 

  2. Trivedi, K., Koley, S.: Hydrodynamics of an U-shaped OWC device in a two-layer fluid system. Energy Rep. 8, 106–111 (2022)

    Google Scholar 

  3. Deng, S., Xiao, T.: Transient two-layer electroosmotic flow and heat transfer of power-law nanofluids in a microchannel. Micromachines 13, 405 (2022)

    Google Scholar 

  4. Elmaboud, Y.A., Abdelsalam, S.I., Mekheimer, K.S., Vafai, K.: Electromagnetic flow for two-layer immiscible fluids. Eng. Sci. Technol. Int. J. 22, 237–248 (2019)

    Google Scholar 

  5. Sudhakar, S., Weibel, J.A., Zhou, F., Dede, E.M., Garimella, S.V.: Area-scalable high-heat-flux dissipation at low thermal resistance using a capillary-fed two-layer evaporator wick. Int. J. Heat Mass Tran. 135, 1346–1356 (2019)

    Google Scholar 

  6. Zhao, Z.L., He, L.C.: Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Appl. Math. Lett. 95, 114–121 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Roshid, H.O.: Lump solutions to a (3+1)-dimensional potential-Yu-Toda-Sasa-Fukuyama (YTSF) like equation. Int. J. Appl. Comput. Math. 3, 1455–1461 (2017)

    MathSciNet  Google Scholar 

  8. Sun, H.Q., Chen, A.H.: Rational solutions and lump solutions of the potential YTSF equation. Z. Naturforsch. A 72, 665–672 (2017)

    Google Scholar 

  9. Foroutan, M., Manafian, J., Ranjbaran, A.: Lump solution and its interaction to (3+1)-D potential-YTSF equation. Nonlinear Dyn. 92, 2077–2092 (2018)

    Google Scholar 

  10. Huang, L., Manafian, J., Singh, G., Nisar, K.S., Nasution, M.K.M.: New lump and interaction soliton, N-soliton solutions and the LSP for the (3 + 1)-D potential-YTSF-like equation. Results Phys. 29, 104713 (2021)

    Google Scholar 

  11. Younisa, M., Ali, S., Rizvic, S.T.R., Tantawyd, M., Tariqe, K.U., Bekirf, A.: Investigation of solitons and mixed lump wave solutions with (3 + 1)-dimensional potential-YTSF equation. Commun. Nonlinear Sci. Numer. Simul. 94, 105544 (2020)

    MathSciNet  Google Scholar 

  12. Sun, Y., Tian, B., Xie, X.Y., Wu, X.Y., Yuan, Y.Q.: Solitonic interaction and Pfaffianization for a (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid. Chin. J. Phys. 55, 2106–2114 (2017)

    Google Scholar 

  13. Hu, Y., Chen, H., Dai, Z.: New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation. Appl. Math. Comput. 234, 548–556 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Wazwaz, A.M., Osman, M.S.: Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Comput. Math. Appl. 76, 276–383 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Khan, K., Akbar, M.A.: Solitons and periodic wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Phys. Rev. Res. Int. 4, 181–197 (2014)

    Google Scholar 

  16. Khater, M.M.A., Zahran, E.H.M.: Soliton Soltuions of nonlinear evolutions equation by using the extended exp \((-\phi (\xi ))\) expansion method. Int. J. Comput. Appl. 145, 0975–8887 (2016)

    Google Scholar 

  17. Kuo, C.K., Chen, Y.C., Wu, C.W., Chao, W.N.: Novel solitary and resonant multi-soliton solutions to the (3 + 1)-dimensional potential-YTSF equation. Mod. Phys. Lett. B 35, 2150326 (2021)

    MathSciNet  Google Scholar 

  18. Zayed, E.M.E., Arnous, A.H.: Exact solutions of the nonlinear ZK-MEW and the Potential YTSF equations using the modified simple equation method. AIP Conf. Proc. 1479, 2044–2048 (2012)

    Google Scholar 

  19. Gou, X., Liu, J., Zhang, Y., Wang, Q.: New exact solutions for the (3 + 1)-dimensional potential-YTSF equation by symbolic calculation. Pramana-J. Phys. 92, 23 (2019)

    Google Scholar 

  20. Zeng, X., Dai, Z., Li, D.: New periodic soliton solutions for the (3 + 1)-dimensional potential-YTSF equation. Chaos Solitons Fract. 42, 657–661 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Manafian, J., Ilhan, O.A., Ismael, H.F., Mohammed, S.A., Mazanova, S.: Periodic wave solutions and stability analysis for the (3+1)-D potential-YTSF equation arising in fluid mechanics. Int. J. Comput. Math. 98, 1594–1613 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Wang, Y.P.: Solving the (3+1)-dimensional potential-YTSF equation with Exp-function method. J. Phys. A Conf. Ser. 96, 012186 (2008)

    Google Scholar 

  23. Li, Z., Dai, Z.: Exact periodic cross-kink wave solutions and breather type of two-solitary wave solutions for the (3 + 1)-dimensional potential-YTSF equation. Comput. Math. Appl. 61, 1939–1945 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Lv, L., Shang, Y.: Abundant new non-travelling wave solutions for the (3+1)-dimensional potential-YTSF equation. Appl. Math. Lett. 107, 106456 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Ma, H., Cheng, Q., Deng, A.: N-soliton solutions and localized wave interaction solutions of a (3 + 1)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation. Mod. Phys. Lett. B 35, 2150277 (2021)

    MathSciNet  Google Scholar 

  26. Yuan, N.: Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Opt. Eng. 57, 043107 (2018)

    Google Scholar 

  27. Yan, Z.Y.: New families of nontravelling wave solutions to a new (3 + 1)-dimensional potential-YTSF equation. Phys. Lett. A 318, 78–83 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Wazwaz, A.M.: Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations. Appl. Math. Comput. 203, 592–597 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, S., Zong, Q.: Exact solutions with external linear functions for the potential Yu-Toda-Sasa-Fukugama equation. Therm. Sci. 22, 1621–1628 (2018)

    Google Scholar 

  30. Islam, M.S., Khan, K., Akbar, M.A.: Exact travelling wave solutions of the (3 + 1)- dimensional potential Yu-Toda-Sasa-Fukuyama equation through the improved F-expansion method with Riccati equation. Int. J. Comput. Sci. Math. 8, 61–72 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, S., Sun, Y.N., Ba, J.M., Dong, L.: The modified \((G^{\prime }/G)\)-expansion method for nonlinear evolution equations. Z. Naturforsch. A 66, 33–39 (2011)

    Google Scholar 

  32. Zhang, S., Zhang, H.Q.: A transformed rational function method for (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Pramana. J. Phys. 76, 561–571 (2011)

    Google Scholar 

  33. Zhu, Q., Qi, J.: On the exact solutions of nonlinear potential Yu-Toda-Sasa-Fukuyama equation by different methods. Discrete Dyn. Nat. Soc. 2022, 2179375 (2022)

    MATH  Google Scholar 

  34. Liu, J., Zeng, Z.: Mulitple soliton solutions, soliton-tyoe solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation. Indian J. Pure Appl. Math. 45, 989–1002 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Feng, Q.H.: Traveling wave solution of (3+1) dimensional Potential-YTSF equation by Bernoulli Sub-ODE method. AMR 403, 212–216 (2012)

    Google Scholar 

  36. Zayed, E.M.E., Ibrahim, S.A.H.: The two variable \((G^{\prime }/G,1/G)\) -expansion method for finding exact traveling wave solutions of the (3+1)- dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation. In: International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013), 388-392 (2013)

  37. Shakeel, M., Din, S.T.M.: Exact solutions of (3 +1)-dimensional Potential-YTSF equation by improved \((G^{\prime }/G)\)-expansion method and the extended tanh-method. Ann. Pure. Appl. Math. 4, 160–171 (2013)

    Google Scholar 

  38. Cao, D., Guo, L.: Exact solution of Yu-Toda-Sasa-Fukugama potential equation in (3+1) dimension. In: International Conference on Advanced Materials, Electronical and Mechanical Engineering, (2020)

  39. Liu, W.: Rouge waves of the (3+1) dimensional potential Yu-Toda-Sasa-Fukugama equation. Rom. Rep. Phys. 69, 114 (2017)

    Google Scholar 

  40. Tan, W., Dai, Z.: Dynamics of kinky wave for (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Nonlinear Dyn. 85, 817 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Ismael, H.F., Okumu, I., Aktürk, T., Bulut, H., Osman, M.S.: Analyzing study for the 3D potential Yu-Toda-Sasa-Fukuyama equation in the two-layer liquid medium. D J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.03.017

    Article  Google Scholar 

  42. Fang, T., Wang, Y.H.: Lump-stripe interaction solutions to the potential Yu-Toda-Sasa-Fukuyama equation. Anal. Math. Phys. 9, 1481–1495 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Cimpoiasu, R.: Multiple invariant solutions of the 3\(D\) potential Yu-Toda-Sasa-Fukuyama equation via symmetry technique. Int. J. Mod. Phys. B 34, 2050188 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

    MATH  Google Scholar 

  45. Darvishi, M.T., Najafi, M.: A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-YTSF equation. Chin. Phys. Lett. 28, 040202 (2011)

    Google Scholar 

  46. Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of (3+1) dimensional Yu-Toda-Sasa-Fukuyama equation in mathematical physics. Comput. Math. Appl. 73, 253 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, T., Xuan, H.N., Zhang, D., Wang, C.J.: Non-travelling wave solutions to a (3 + 1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures. Chaos Soliton. Fract. 34, 1006–1013 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Rashed, A.S., Inc, M., Saleh, R.: Extensive novel waves evolution of three-dimensional Yu-Toda-Sasa-Fukuyama equation compatible with plasma and electromagnetic applications. Mod. Phys. Lett. B 37, 2250195 (2022)

    Google Scholar 

  49. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

    MathSciNet  MATH  Google Scholar 

  50. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

    MATH  Google Scholar 

  51. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    MathSciNet  MATH  Google Scholar 

  52. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599–1616 (2022)

    Google Scholar 

  53. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    MathSciNet  MATH  Google Scholar 

  54. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)

    MATH  Google Scholar 

  55. Xia, P., Zhang, Y., Zhang, H., Zhuang, Y.: Some novel dynamical behaviours of localized solitary waves for the Hirota-Maccari system. Nonlinear Dyn. 108, 533–541 (2022)

    Google Scholar 

  56. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, New York (2004)

    MATH  Google Scholar 

  57. Peng, J., Boscolo, S., Zhao, Z., Zeng, H.: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, 1110 (2019)

    Google Scholar 

  58. Peng, J., Zhao, Z., Boscolo, S., Finot, C., Sugavanam, S., Churkin, D.V., Zeng, H.: Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev. 15, 2000132 (2021)

    Google Scholar 

  59. Wu, X., Peng, J., Boscolo, S., Zhang, Y., Finot, C., Zeng, H.: Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16, 2100191 (2022)

    Google Scholar 

  60. Jiang, Y., Rao, J., Mihalache, D., He, J., Cheng, Y.: Rogue breathers and rogue lumps on a background of dark line solitons for the Maccari system. Commun. Nonl. Sci. Numer. Simul. 102, 105943 (2021)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  62. Han, P.F., Bao, T.: Dynamical behavior of multiwave interaction solutions for the (3+1)-dimensional Kadomtsev-Petviashvili-Bogoyavlensky-Konopelchenko equation. Nonlinear Dyn. 111, 4753–4768 (2023)

    Google Scholar 

  63. Xu, Y., Mihalache, D., He, J.: Resonant collisions among two-dimensional localized waves in the Mel’nikov equation. Nonlinear Dyn. 106, 2431–2448 (2021)

    Google Scholar 

  64. Zhang, S., Lan, P., Su, J.J.: Wave-packet behaviors of the defocusing nonlinear Schrödinger equation based on the modified physics-informed neural networks. Chaos. 31, 113107 (2021)

    Google Scholar 

  65. Su, J.J., Zhang, S., Ding, C.C.: Spatiotemporal distortion effects and interaction properties for certain nonlinear waves of the generalized AB system. Nonlinear Dyn. 106, 2415–2429 (2021)

    Google Scholar 

  66. Su, J.J., Deng, G.F.: Quasi-periodic waves and irregular solitary waves of the AB system. Wave. Random Complex 32, 856–866 (2022)

    MathSciNet  MATH  Google Scholar 

  67. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    MathSciNet  MATH  Google Scholar 

  68. Zhang, S.S., Xu, T., Li, M., Zhang, X.F.: Higher-order algebraic soliton solutions of the Gerdjikov-Ivanov equation: asymptotic analysis and emergence of rogue waves. Physica D 432, 133128 (2022)

    MathSciNet  MATH  Google Scholar 

  69. Rao, J., Kanna, T., Mihalache, D., He, J.: Resonant collision of lumps with homoclinic orbits in the two-dimensional multi-component long-wave-short-wave resonance interaction systems. Physica D 439, 133281 (2022)

    MathSciNet  MATH  Google Scholar 

  70. Su, J.J., Zhang, S.: Nth-order rogue waves for the AB system via the determinants. Appl. Math. Lett. 112, 106714 (2021)

    MATH  Google Scholar 

  71. Su, J.J., Ruan, B.: N-fold binary Darboux transformation for the nth-order Ablowitz-Kaup-Newell-Segur system under a pseudo-symmetry hypothesis. Appl. Math. Lett. 125, 107719 (2022)

    MATH  Google Scholar 

  72. Ma, Y., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  73. Akinyemi, L., Morazara, E.: Dynamics of transformed nonlinear waves in the (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation II: interactions and molecular waves. Nonlinear Dyn. 111, 4613–4629 (2023)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Tian, B., Tian, HY. et al. Gram-type, breather and hybrid solutions for the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid. Nonlinear Dyn 111, 16353–16365 (2023). https://doi.org/10.1007/s11071-023-08579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08579-4

Keywords

Navigation