Skip to main content
Log in

Video analysis of nonlinear systems with extended Kalman filtering for modal identification

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study proposes to carry out the experimental modal analysis of nonlinear systems under the assumption of almost invariant modal shapes by coupling video analysis from a high speed/resolution camera and extended Kalman filtering. A clamped-clamped beam with a local nonlinearity is considered, and its vibrations are measured by detecting and tracking a large set of (virtual) sensors bonded to the beam outer surface. Specific image processing and video tracking techniques are employed and detailed herein. Then, the instantaneous natural frequencies and modal amplitudes are identified by means of a data assimilation method based on extended Kalman and modal filters. Finally, the proposed method of identification is assessed using a numerical example possessing 3 degrees of freedom and a strong nonlinearity. The performance and limits of the identification process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics - a review. Mech. Syst. Signal Process. 86, 17–34 (2017). https://doi.org/10.1016/j.ymssp.2016.02.011

    Article  Google Scholar 

  2. Wang, W., Mottershead, J.E., Siebert, T., Pipino, A.: Frequency response functions of shape features from full-field vibration measurements using digital image correlation. Mech. Syst. Signal Process. 28, 333–347 (2012). https://doi.org/10.1016/j.ymssp.2011.11.023

    Article  Google Scholar 

  3. Beberniss, T.J., Ehrhardt, D.A.: High-speed 3D digital image correlation vibration measurement: recent advancements and noted limitations. Mech. Syst. Signal Process. 86(B), 35–48 (2016). https://doi.org/10.1016/j.ymssp.2016.04.014

    Article  Google Scholar 

  4. Pan, B., Yu, L., Zhang, Q.: Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement. Sci. China Technol. Sci. 61, 2–20 (2018)

    Article  Google Scholar 

  5. Yu, L., Pan, B.: Single-camera high-speed stereo-digital image correlation for full-field vibration measurement. Mech. Syst. Signal Process. 94, 374–383 (2017). https://doi.org/10.1016/j.ymssp.2017.03.008

    Article  Google Scholar 

  6. Javh, J., Slavič, J., Boltežar, M.: The subpixel resolution of optical-flow-based modal analysis. Mech. Syst. Signal Process. 88, 89–99 (2017). https://doi.org/10.1016/j.ymssp.2016.11.009

    Article  Google Scholar 

  7. Javh, J., Slavič, J., Boltežar, M.: Experimental modal analysis on full-field DSLR camera footage using spectral optical flow imaging. J. Sound Vib. 434, 213–220 (2018). https://doi.org/10.1016/j.jsv.2018.07.046

    Article  Google Scholar 

  8. Gorjup, D., Slavič, J., Babnik, A., Boltežar, M.: Still-camera multiview spectral optical flow imaging for 3D operating-deflection-shape identification. Mech. Syst. Signal Process. 152, 107,456 (2021). https://doi.org/10.1016/j.ymssp.2020.107456

    Article  Google Scholar 

  9. Chen, J.G., Wadhwa, N., Cha, Y.J., Durand, F., Freeman, W.T., Buyukozturk, O.: Modal identification of simple structures with high-speed video using motion magnification. J. Sound Vib. 345, 58–71 (2015). https://doi.org/10.1016/j.jsv.2015.01.024

    Article  Google Scholar 

  10. Wadhwa, N., Wu, H.Y., Davis, A., Rubinstein, M., Shih, E., Mysore, G.J., Chen, J.G., Buyukozturk, O., Guttag, J.V., Freeman, W.T., Durand, F.: Eulerian video magnification and analysis. Commun. ACM 60(1), 87–95 (2016). https://doi.org/10.1145/3015573

    Article  Google Scholar 

  11. Yang, Y., Dorn, C., Mancini, T., Talken, Z., Kenyon, G., Farrar, C., Mascareñas, D.: Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 85, 567–590 (2017). https://doi.org/10.1016/j.ymssp.2016.08.041

    Article  Google Scholar 

  12. Shang, Z., Shen, Z.: Multi-point vibration measurement and mode magnification of civil structures using video-based motion processing. Autom. Constr. 93, 231–240 (2018). https://doi.org/10.1016/j.autcon.2018.05.025

    Article  Google Scholar 

  13. Park, J.W., Lee, J.J., Jung, H.J., Myung, H.: Vision-based displacement measurement method for high-rise building structures using partitioning approach. NDT E Int. 43(7), 642–647 (2010). https://doi.org/10.1016/j.ndteint.2010.06.009

    Article  Google Scholar 

  14. Pai, P.F., Ramanathan, S., Hu, J., Chernova, D.K., Qian, X., Wu, G.: Camera-based noncontact metrology for static/dynamic testing of flexible multibody systems. Meas. Sci. Technol. 21(8), 085,302 (2010). https://doi.org/10.1088/0957-0233/21/8/085302

    Article  Google Scholar 

  15. Romaszko, M., Sapiński, B., Sioma, A.: Forced vibrations analysis of a cantilever beam using the vision method. J. Theor. Appl. Mech. (2015). https://doi.org/10.15632/jtam-pl.53.1.243

    Article  Google Scholar 

  16. Busca, G., Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 54, 255–271 (2014). https://doi.org/10.1007/s11340-013-9784-8

    Article  Google Scholar 

  17. Ferrer, B., Mas, D., García-Santos, J., et al.: Parametric study of the errors obtained from the measurement of the oscillating movement of a bridge using image processing. J. Nondestruct. Eval. (2016). https://doi.org/10.1007/s10921-016-0372-6

    Article  Google Scholar 

  18. Jeon, H., Bang, Y., Myung, H.: A paired visual servoing system for 6-dof displacement measurement of structures. Smart Mater. Struct. 20, 045019 (2011). https://doi.org/10.1088/0964-1726/20/4/045019

    Article  Google Scholar 

  19. Ribeiro, D., Calçada, R., Ferreira, J., Martins, T.: Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Eng. Struct. 75, 164–180 (2014). https://doi.org/10.1016/j.engstruct.2014.04.051

    Article  Google Scholar 

  20. Henke, K., Pawlowski, R., Schregle, P., et al.: Use of digital image processing in the monitoring of deformations in building structures. J. Civ. Struct. Health Monit. 5, 141–152 (2015). https://doi.org/10.1007/s13349-014-0091-6

    Article  Google Scholar 

  21. de Figueiredo, H.V., Castillo-Zúñiga, D.F., Costa, N.C., Saotome, O., da Silva, R.G.A.: Aeroelastic vibration measurement based on laser and computer vision technique. Exp. Tech. 45, 95–107 (2021). https://doi.org/10.1007/s40799-020-00399-0

    Article  Google Scholar 

  22. Mas, D., Espinosa, J., Roig, A.B., Ferrer, B., Perez, J., Illueca, C.: Measurement of wide frequency range structural microvibrations with a pocket digital camera and sub-pixel techniques. Appl. Opt. 51(14), 2664 (2012). https://doi.org/10.1364/ao.51.002664

    Article  Google Scholar 

  23. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005). https://doi.org/10.1109/TPAMI.2005.188

    Article  Google Scholar 

  24. Fraundorfer, F., Bischof, H.: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops (2005), pp. 33–33. https://doi.org/10.1109/CVPR.2005.393

  25. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  26. Ferrarini, B., Ehsan, S., Leonardis, A., Rehman, N.U., McDonald-Maier, K.D.: Performance characterization of image feature detectors in relation to the scene content utilizing a large image database. IEEE Access 6, 8564–8573 (2018). https://doi.org/10.1109/ACCESS.2018.2795460

    Article  Google Scholar 

  27. Renaud, F., Lo Feudo, S., Dion, J.L., Goeller, A.: 3D vibrations reconstruction with only one camera. Mech. Syst. Signal Process. 162, 108,032 (2022). https://doi.org/10.1016/j.ymssp.2021.108032

    Article  Google Scholar 

  28. Reu, P.L., Rohe, D.P., Jacobs, L.D.: Comparison of DIC and LDV for practical vibration and modal measurements. Mech. Syst. Signal Process. 86, 2–16 (2017). https://doi.org/10.1016/j.ymssp.2016.02.006

    Article  Google Scholar 

  29. Durand-Texte, T., Melon, M., Simonetto, E., Durand, S., Moulet, M.H.: Single-camera single-axis vision method applied to measure vibrations. J. Sound Vib. 465, 115012 (2020). https://doi.org/10.1016/j.jsv.2019.115012

    Article  Google Scholar 

  30. Kohut, P., Kurowski, P.: Application of modal analysis supported by 3D vision-based measurements. J. Theor. Appl. Mech. 47(4), 855–870 (2009)

    Google Scholar 

  31. Gorjup, D., Slavič, J., Boltežar, M.: Frequency domain triangulation for full-field 3D operating-deflection-shape identification. Mech. Syst. Signal Process. 133, 106287 (2019). https://doi.org/10.1016/j.ymssp.2019.106287

    Article  Google Scholar 

  32. Golinval, J.C., Argoul, P.: COST ACTION F3 “structural dynamics” 1997-2001 presentation and some preliminary results. Structural Control for Civil and Infrastructure Engineering pp. 263–280 (2001)

  33. Goeller, A., Dion, J.L., Le Breton, R., Soriano, T.: Kinematic SAMI: a new real-time multi-sensor data assimilation strategy for nonlinear modal identification. Mech. Ind. 21(4), 413 (2020). https://doi.org/10.1051/meca/2020035

    Article  Google Scholar 

  34. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, part I: A useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23(1), 170–194 (2009). https://doi.org/10.1016/j.ymssp.2008.04.002

    Article  Google Scholar 

  35. Goeller, A.: Modéles réduits dynamiques pour la synthése de séquences vidéo - application à la compression de données, la réalité augmentée et la prédiction. Ph.D. thesis, Univ. Paris Saclay SMEMAG (2018)

  36. Shi, J., Tomasi, C.: Good features to track. IEEE Conference on Computer Vision and Pattern Recognition pp. 593–600 (1994)

  37. Torr, P., Zisserman, A.: Mlesac: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000). https://doi.org/10.1006/cviu.1999.0832

    Article  Google Scholar 

  38. Dion, J.L., Stephan, C., Chevallier, G., Festjens, H.: Tracking and removing modulated sinusoidal components: a solution based on the kurtosis and the extended Kalman filter. Mech. Syst. Signal Process. 38(2), 428–439 (2013). https://doi.org/10.1016/j.ymssp.2013.04.001

    Article  Google Scholar 

  39. Peeters, M., Kerschen, G., Golinval, J.C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25(4), 1227–1247 (2011). https://doi.org/10.1016/j.ymssp.2010.11.006

    Article  Google Scholar 

  40. Peeters, M., Kerschen, G., Golinval, J.C.: Dynamic testing of nonlinear vibrating structures using nonlinear normal modes. J. Sound Vib. 330(3), 486–509 (2011). https://doi.org/10.1016/j.jsv.2010.08.028

    Article  Google Scholar 

  41. Jones, E., Iadicola (eds.), M.E.: A Good Practices Guide for Digital Image Correlation (International Digital Image Correlation Society, 2018). https://doi.org/10.32720/idics/gpg.ed1

  42. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration. Wiley, New York (2011)

    Book  Google Scholar 

  43. Le, T.P., Argoul, P.: Continuous wavelet transform for modal identification using free decay response. J. Sound Vib. 277(1), 73–100 (2004). https://doi.org/10.1016/j.jsv.2003.08.049

    Article  Google Scholar 

  44. Chui, C.K., Chen, G.: Kalman Filtering with Real-Time Applications. Springer, Berlin (2013)

    Google Scholar 

  45. Gade, S., Herlufsen, H.: Use of weighting functions in DFT/FFT analysis (part I). Tech. Rep. 3, Brüel & Kjær Technical Review (1987)

  46. Heinzel, G., Rüdiger, A.O., Schilling, R.: Spectrum and spectral density estimation by the discrete fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. Tech. rep., Max Planck Institute für Gravitationsphysik / Laser Interferometry & Gravitational Wave Astronomy (2002)

Download references

Acknowledgements

We thank Tilàn Dossogne (University of Liège) and Reza Babajanivalashedi (ISAE-Supméca) for their time and help during the experimental campaign.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Lo Feudo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Feudo, S., Dion, JL., Renaud, F. et al. Video analysis of nonlinear systems with extended Kalman filtering for modal identification. Nonlinear Dyn 111, 13263–13277 (2023). https://doi.org/10.1007/s11071-023-08560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08560-1

Keywords

Navigation