Skip to main content

Advertisement

Log in

Switching threshold event-triggered estimation and control for unmeasured oxygen excess ratio of automotive PEMFC air feeding system with input and prescribed performance constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The oxygen excess ratio (OER) significantly affects the output efficiency and durability of the polymer electrolyte membrane fuel cell (PEMFC), which is unmeasurable and difficult to control reliably. This paper comprehensively considers various practical limitations of the automotive PEMFC air feeding subsystem, including time-varying load, unavailable variables, actuator saturation, performance constraints and limited communication resources, to specially address the event-triggered estimation and control problems for OER. First, a switching threshold event-triggered mechanism (STETM)-based extended state observer (termed STET-ESO) is developed to exactly estimate the unmeasured cathode pressure and OER, in which an adaptive observer bandwidth ensures a dynamic balance between disturbance rejection and noise immunity. Similarly, another STET-ESO is constructed to simultaneously approximate the lumped disturbance and the derivative of OER tracking error. Then, a prescribed performance sliding mode function and an auxiliary system are designed to deal with the tracking error constraints and input saturation, respectively. Further, a switching threshold event-triggered anti-saturation prescribed performance sliding mode controller is proposed to guarantee superior OER regulation under uncertainties, disturbances and constraints; moreover, the chattering and jump phenomena of control signal can be greatly attenuated. It is worth mentioning that different STETMs embed in the sensor-to-controller and controller-to-actuator channels can not only save communication resources, but also better compromise estimation/control performance and communication frequency; besides, the unexpected Zeno behavior can be strictly excluded. Finally, the effectiveness and superiority of the proposed scheme in different operating scenarios are verified by comparative simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Shahiri, M., Ranjbar, A., Karami, M.R., Ghader, R.: Robust control of nonlinear PEMFC against uncertainty using fractional complex order control. Nonlinear Dyn. 80(4), 1785–1800 (2014)

    Google Scholar 

  2. Wang, Y., Wang, Y., Xu, J., Chai, T.: Observer-based discrete adaptive neural network control for automotive PEMFC air-feed subsystem. IEEE Trans. Veh. Technol. 70(4), 3149–3163 (2021)

    Google Scholar 

  3. Kim, B.M., Yoo, S.J.: Decentralized event-triggered adaptive control for interconnected nonlinear dynamics of constrained air supply and thermal management systems of PEMFCs. Nonlinear Dyn. 103, 791–808 (2021)

    Google Scholar 

  4. Zhao, D., Xia, L., Dang, H., Wu, Z., Li, H.: Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy. Energy Convers. Manag. 253, 115159 (2022)

    Google Scholar 

  5. Sun, L., Jin, Y., Pan, L., Shen, J., Lee, K.Y.: Efficiency analysis and control of a grid-connected PEM fuel cell in distributed generation. Energy Convers. Manag. 195, 587–596 (2019)

    Google Scholar 

  6. Li, X., Wang, Y., Yang, D., Chen, Z.: Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin’s minimal principle. J. Power Sources 440, 227105 (2019)

    Google Scholar 

  7. Wang, Y., Diaz, D.F.R., Chen, K., Wang, Z., Adroher, X.C.: Materials, technological status, and fundamentals of PEM fuel cells—a review. Mater. Today 32, 178–203 (2020)

    Google Scholar 

  8. Wu, L., Mehrdad, F.G.: A novel fuzzy reset method for pressure control of proton exchange membrane fuel cell in the presence of uncertainty. Int. J. Energy Res. 46(2), 1951–1961 (2021)

    Google Scholar 

  9. Abbaker, A.M.O., Wang, H., Tian, Y.: Adaptive integral type-terminal sliding mode control for PEMFC air supply system using time delay estimation algorithm. Asian J. Control 24(1), 217–226 (2022)

    Google Scholar 

  10. Zhao, D., Xu, L., Huangfu, Y., Dou, M., Liu, J.: Semi-physical modeling and control of a centrifugal compressor for the air feeding of a PEM fuel cell. Energy Convers. Manag. 154, 380–386 (2017)

    Google Scholar 

  11. Yang, Z., Du, Q., Jia, Z., Yang, C., Jiao, K.: Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model. Energy 183, 462–476 (2019)

    Google Scholar 

  12. Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of fuel cell power systems: principles. Modeling analysis and feedback design. Springer, Berlin (2004)

    MATH  Google Scholar 

  13. Talj, R., Ortega, R., Astolfi, A.: Passivity and robust PI control of the air supply system of a PEM fuel cell model. Automatica 47(12), 2554–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Chen, J., Liu, Z., Wang, F., Quan, O., Su, H.: Optimal oxygen excess ratio control for PEM fuel cells. IEEE Trans. Control Syst. Technol. 26(5), 1711–1721 (2018)

    Google Scholar 

  15. Gruber, J.K., Bordons, C., Oliva, A.: Nonlinear MPC for the airflow in a PEM fuel cell using a Volterra series model. Control Eng. Pract. 20(2), 205–217 (2012)

    Google Scholar 

  16. Ziogou, C., Papadopoulou, S., Georgiadis, M.C., Voutetakis, S.: On-line nonlinear model predictive control of a PEM fuel cell system. J. Process Contr. 23(4), 483–492 (2013)

    Google Scholar 

  17. Wang, Y., Wang, Y., Zhao, J., Xu, J.: Observer-based adaptive neural network control for PEMFC air-feed subsystem. Appl. Soft Comput. 113, 108003 (2021)

    Google Scholar 

  18. Kim, B.M., Choi, Y.H., Yoo, S.J.: Adaptive control of proton exchange membrane fuel cell air supply systems with asymmetric oxygen excess ratio constraints. IEEE Access 8, 5537–5549 (2020)

    Google Scholar 

  19. Zhang, H., Wang, Y., Wang, D., Wang, Y.: Adaptive robust control of oxygen excess ratio for PEMFC system based on type-2 fuzzy logic system. Inform. Sci. 511, 1–17 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Yang, D., Pan, R., Wang, Y., Chen, Z.: Modeling and control of PEMFC air supply system based on TS fuzzy theory and predictive control. Energy 188, 116078 (2019)

    Google Scholar 

  21. Baroud, Z., Benmiloud, M., Benalia, A., Ocampo-Martinez, C.: Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems. Int. J. Hydrogen Energy 42(15), 10435–10447 (2017)

    Google Scholar 

  22. Kunusch, C., Puleston, P.F., Mayosky, M.A., Riera, J.: Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm. IEEE Trans. Control Syst. Technol. 17(1), 167–174 (2008)

    Google Scholar 

  23. Matraji, I., Laghrouche, S., Jemei, S., Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)

    Google Scholar 

  24. Pilloni, A., Pisano, A., Usai, E.: Observer-based air excess ratio control of a PEM fuel cell system via high-order sliding mode. IEEE Trans. Ind. Electron. 62(8), 5236–5246 (2015)

    Google Scholar 

  25. Deng, H., Li, Q., Cui, Y., Zhu, Y., Chen, W.: Nonlinear controller design based on cascade adaptive sliding mode control for PEM fuel cell air supply systems. Int. J. Hydrogen Energy 44(35), 19357–19369 (2019)

    Google Scholar 

  26. Abbaker, A.M.O., Wang, H., Tian, Y.: Robust model-free adaptive interval type-2 fuzzy sliding mode control for PEMFC system using disturbance observer. Int. J. Fuzzy Syst. 22(7), 2188–2203 (2020)

    Google Scholar 

  27. Esfandiari, K., Abdollahi, F., Talebi, H.A.: Adaptive control of uncertain nonaffine nonlinear systems with input saturation using neural networks. IEEE Trans. Neural Netw. Learn Syst. 26(10), 2311–2322 (2014)

    MathSciNet  Google Scholar 

  28. Wu, Y., Huang, R., Wang, Y., Wang, J.: Adaptive tracking control of robot manipulators with input saturation and time-varying output constraints. Asian J. Control 23(3), 1476–1489 (2021)

    MathSciNet  Google Scholar 

  29. Liang, K., Lin, X., Chen, Y., Li, J., Ding, F.: Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation. Ocean Eng. 206, 107245 (2020)

    Google Scholar 

  30. Rakhtala, S.M., Noei, A.R., Ghaderi, R., Usai, E.: Design of finite-time high-order sliding mode state observer: A practical insight to PEM fuel cell system. J. Process Contr. 24(1), 203–224 (2014)

    Google Scholar 

  31. Liu, J., Gao, Y., Su, X., Wack, M., Wu, L.: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Trans. Control Syst. Technol. 27(3), 1129–1138 (2018)

    Google Scholar 

  32. Yuan, H., Dai, H., Ming, P., Zhan, J., Wei, X.: A fuzzy extend state observer-based cascade decoupling controller of air supply for vehicular fuel cell system. Energy Convers. Manage. 236, 114080 (2021)

    Google Scholar 

  33. Zhang, C., Yang, G.: Event-triggered global finite-time control for a class of uncertain nonlinear systems. IEEE Trans. Automat. Contr. 65(3), 1340–1347 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Lu, Q., Shi, P., Wu, L., Lim, C.C.: Event-triggered estimation and model predictive control for linear systems with actuator fault. IET Control Theory Appl. 14(16), 2406–2412 (2020)

    MathSciNet  Google Scholar 

  35. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Automat. Contr. 62(4), 2071–2076 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Talj, R.J., Hissel, D., Ortega, R., Becherif, M., Hilairet, M.: Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control. IEEE Trans. Ind. Electron. 57(6), 1906–1913 (2009)

    Google Scholar 

  37. Huang, Y., Wang, J., Shi, D., Shi, L.: Toward event-triggered extended state observer. IEEE Trans. Autom. Contr. 63(6), 1842–1849 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Huang, S., Wang, J., Xiong, L., Liu, J., Li, P., Wang, Z.: Distributed predefined-time fractional-order sliding mode control for power system with prescribed tracking performance. IEEE Trans. Power Syst. 37(3), 2233–2246 (2022)

    Google Scholar 

  39. Xu, G., Xia, Y., Zhai, D., Ma, D.: Adaptive prescribed performance terminal sliding mode attitude control for quadrotor under input saturation. IET Control Theory Appl. 14(17), 2473–2480 (2020)

    MathSciNet  Google Scholar 

  40. Zhang, R., Xu, B., Zhao, W.: Finite-time prescribed performance control of MEMS gyroscopes. Nonlinear Dyn. 101(4), 2223–2234 (2020)

    Google Scholar 

  41. Yang, Y., Ge, C., Wang, H., Li, X., Hua, C.: Adaptive neural network based prescribed performance control for teleoperation system under input saturation. J. Frankl. Inst. 352(5), 1850–1866 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Shao, K., Zheng, J., Wang, H., Xu, F., Liang, B.: Recursive sliding mode control with adaptive disturbance observer for a linear motor positioner. Mech. Syst. Signal Process. 146, 107014 (2021)

    Google Scholar 

  43. Ma, B., Luo, G., Wang, Y.: Observer-based event-triggered control of steer-by-wire systems with prespecified tracking accuracy. Mech. Syst. Signal. Process. 161, 107857 (2021)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number [51675091]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Li.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, Z., Li, H. et al. Switching threshold event-triggered estimation and control for unmeasured oxygen excess ratio of automotive PEMFC air feeding system with input and prescribed performance constraints. Nonlinear Dyn 111, 14027–14054 (2023). https://doi.org/10.1007/s11071-023-08559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08559-8

Keywords

Navigation