Skip to main content
Log in

Solution of the Hirota equation using a physics-informed neural network method with embedded conservation laws

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The solution of the integrable Hirota equation has attracted considerable attention in the applications of nonlinear optics, electromagnetics, and many other natural sciences. In this paper, we propose an improved physics-informed neural network (IPINN) method to study numerical solutions of the Hirota equation, which embeds energy conservation laws into a traditional neural network through the Lax pair formulation. Our simulation results show that the proposed method can predict the solutions and parameters of the Hirota equation more accurately than the traditional physics-informed neural network method. In addition, the influence on the rogue wave solution for the Hirota equation of the three factors of the IPINN method that are, number of network layers and hidden layer neurons, sampling points, and noises, is also analyzed in detail. In our study, it is worth noting that the presented method can achieve good prediction with fewer training data and iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

Data will be made available on reasonable request.

References

  1. Leta, T.D., Li, J.: Dynamical behavior and exact solution in invariant manifold for a septic derivative nonlinear Schrödinger equation. Nonlinear Dyn. 89(1), 509–529 (2017)

    MATH  Google Scholar 

  2. Lovász, B., Sándor, P., Kiss, G.Z., Bánhegyi, B., Rácz, P., Pápa, Z., Budai, J., Prietl, C., Krenn, J.R., Dombi, P.: Nonadiabatic nano-optical tunneling of photoelectrons in plasmonic near-fields. Nano Lett. 22(6), 2303–2308 (2022)

    Google Scholar 

  3. Cousins, W., Sapsis, T.P.: Unsteady evolution of localized unidirectional deep-water wave groups. Phys. Rev. E 91(6), 063204 (2015)

    MathSciNet  Google Scholar 

  4. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E 80(2), 026601 (2009)

    Google Scholar 

  5. Hull, T.E., Infeld, L.: The factorization method, hydrogen intensities, and related problems. Phys. Rev. 74(8), 905 (1948)

    MATH  Google Scholar 

  6. Mio, K., Ogino, T., Minami, K., Takeda, S.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn. 41(1), 265–271 (1976)

    MATH  Google Scholar 

  7. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19(4), 798–801 (1978)

    MATH  Google Scholar 

  8. Xiang, X.S., Zuo, D.W.: Breather and rogue wave solutions of coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 107, 1195–1204 (2022)

    Google Scholar 

  9. Jia, H.X., Zuo, D.W., Li, X.H., Xiang, X.S.: Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation. Phys. Lett. A 405, 127426 (2021)

    MATH  Google Scholar 

  10. Zafar, A.J., Mitra, A., Apalkov, V.: Ultrafast valley polarization of graphene nanorings. Phys. Rev. B 106(15), 155147 (2022)

    Google Scholar 

  11. Shi, D., Li, M., Huang, G., Shu, R.: Polarization-dependent characteristics of a photon-counting laser ranging system. Opt. Commun. 456, 124597 (2020)

    Google Scholar 

  12. Ivanov, S.K., Kartashov, Y.V., Szameit, A., Torner, L., Konotop, V.V.: Floquet edge multicolor solitons. Laser Photonics Rev. 16(3), 2100398 (2022)

    Google Scholar 

  13. Sheveleva, A., Andral, U., Kibler, B., Colman, P., Dudley, J. M., Finot, C.: Ideal four wave mixing dynamics in a nonlinear Schrödinger equation fibre system (2022). arXiv:2203.06962

  14. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14(7), 805–809 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, H.Q., Yuan, S.S.: Dark soliton solutions of the defocusing Hirota equation by the binary Darboux transformation. Nonlinear Dyn. 89(1), 531–538 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Zuo, D.W., Zhang, G.F.: Exact solutions of the nonlocal Hirota equations. Appl. Math. Lett. 93, 66–71 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Hao, H.Q., Zhang, J.W.: Studies on interactions between bound solitons in the Hirota equation. Superlattices Microstruct. 101, 507–511 (2017)

    Google Scholar 

  18. Nikolić, S.N., Aleksić, N.B., Ashour, O.A., Belić, M.R., Chin, S.A.: Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds. Nonlinear Dyn. 89(3), 1637–1649 (2017)

    MathSciNet  Google Scholar 

  19. Djoptoussia, C., Tiofack, C.G.L., Mohamadou, A., Kofané, T.C.: Ultrashort self-similar periodic waves and similaritons in an inhomogeneous optical medium with an external source and modulated coefficients. Nonlinear Dyn. 107, 1–14 (2022)

    Google Scholar 

  20. Huang, Y., Di, J., Yao, Y.: The \(\overline{\partial }\)-dressing method applied to nonlinear defocusing Hirota equation with nonzero boundary conditions. Nonlinear Dyn. 111, 1–12 (2022)

    Google Scholar 

  21. Belyaeva, T.L., Serkin, V.N.: Nonlinear dynamics of nonautonomous solitons in external potentials expressed by time-varying power series: exactly solvable higher-order nonlinear and dispersive models. Nonlinear Dyn. 107(1), 1153–1162 (2022)

    Google Scholar 

  22. Yin, H.M., Pan, Q., Chow, K.W.: Doubly periodic solutions and breathers of the Hirota equation: recurrence, cascading mechanism and spectral analysis. Nonlinear Dyn. 110, 1–18 (2022)

    Google Scholar 

  23. Abdelrahim, M., Saiga, H., Maeda, N., Hossain, E., Ikeda, H., Bhandari, P.: Automated sizing of colorectal polyps using computer vision. Gut 71(1), 7–9 (2022)

    Google Scholar 

  24. Li, H.: Deep learning for natural language processing: advantages and challenges. Natl. Sci. Rev. 5(1), 24–26 (2018)

    Google Scholar 

  25. Tomov, M.S., Schulz, E., Gershman, S.J.: Multi-task reinforcement learning in humans. Nat. Hum. Behav. 5(6), 764–773 (2021)

    Google Scholar 

  26. Bar-Sinai, Y., Hoyer, S., Hickey, J., Brenner, M.P.: Learning data-driven discretizations for partial differential equations. Proc. Natl. Acad. Sci. 116(31), 15344–15349 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Panghal, S., Kumar, M.: Optimization free neural network approach for solving ordinary and partial differential equations. Eng. Comput. 37(4), 2989–3002 (2021)

    Google Scholar 

  28. Brink, A.R., Najera-Flores, D.A., Martinez, C.: The neural network collocation method for solving partial differential equations. Neural Comput. Appl. 33(11), 5591–5608 (2021)

    Google Scholar 

  29. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 115(34), 8505–8510 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Georgoulis, E.H., Loulakis, M., Tsiourvas, A.: Discrete gradient flow approximations of high dimensional evolution partial differential equations via deep neural networks. Commun. Nonlinear Sci. 117, 106893 (2023)

    MathSciNet  MATH  Google Scholar 

  31. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Inferring solutions of differential equations using noisy multi-fidelity data. J. Comput. Phys. 335, 736–746 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J. Sci. Comput. 40(1), A172–A198 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations (2017). arXiv:1711.10561

  34. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations (2017). arXiv:1711.10566

  35. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 3(5), 551–560 (1990)

    Google Scholar 

  37. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18, 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Arzani, A., Wang, J.X., D’Souza, R.M.: Uncovering near-wall blood flow from sparse data with physics-informed neural networks. Phys. Fluids 33(7), 071905 (2021)

    Google Scholar 

  39. Bai, Y., Chaolu, T., Bilige, S.: The application of improved physics-informed neural network (IPINN) method in finance. Nonlinear Dyn. 107(4), 3655–3667 (2022)

    Google Scholar 

  40. Kim, J., Lee, C.: Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid Mech. 882, A18 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Fang, Y., Wu, G.Z., Kudryashov, N.A., Wang, Y.Y., Dai, C.Q.: Data-driven soliton solutions and model parameters of nonlinear wave models via the conservation-law constrained neural network method. Chaos Solitons Fractals 158, 112118 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Zhou, Z., Yan, Z.: Deep learning neural networks for the third-order nonlinear Schrödinger equation: bright solitons, breathers, and rogue waves. Commun. Theor. Phys. 73(10), 105006 (2021)

    MATH  Google Scholar 

  43. Bai, Y.: A novel method for solving third-order nonlinear Schrödinger equation by deep learning. Waves Random Complex 1–11 (2022)

  44. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93(1), 012206 (2016)

    MathSciNet  Google Scholar 

  45. Hisakado, M., Wadati, M.: Inhomogenious model for DNA dynamics. J. Phys. Soc. Jpn. 64(4), 1098–1103 (1995)

    Google Scholar 

  46. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980

  47. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503–528 (1989)

    MathSciNet  MATH  Google Scholar 

  48. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    MATH  Google Scholar 

  49. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81(4), 046602 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 11601411), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2021JM-448), and the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2023-JC-YB-063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Su, J. & Feng, J. Solution of the Hirota equation using a physics-informed neural network method with embedded conservation laws. Nonlinear Dyn 111, 13399–13414 (2023). https://doi.org/10.1007/s11071-023-08557-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08557-w

Keywords

Navigation