Skip to main content
Log in

Hopf bifurcation in a fractional-order neural network with self-connection delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the bifurcation problem of a two-delayed fractional-order neural network(FONN) with three neurons. To begin with, the bifurcation progresses with regard to some types of time delays are captured by employing the self-connecting delay as a bifurcation parameter. Afterwards, communication delay is viewed as a bifurcation parameter to cultivate bifurcation outcomes for the developed FONN, and the communication delay triggered-bifurcation conditions are captured. There is an evidence that FONN emanates remarkable stability as long as a smaller value of them is selected, and the stability performance deterioration and Hopf bifurcations take place once choosing a larger control time delay. Eventually, the correctness of the developed theoretical discoveries is appraised by employing numerical revelations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Rajchakit, G., Chanthorn, P., Niezabitowski, M., Raja, R., Baleanu, D., Pratap, A.: Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks. Neurocomputing 417, 290–301 (2020)

    Article  Google Scholar 

  2. Arslan, E., Narayanan, G., Syed Ali, M., Arik, S., Saroha, S.: Controller design for finite-time and fixed-time stabilization of fractional-order memristive complex-valued BAM neural networks with uncertain parameters and time-varying delays. Neural Netw. 130, 60–74 (2020)

    Article  MATH  Google Scholar 

  3. Tavares, C.A., Santos, T.M.R., Lemes, N.H.T., dos Santos, J.P.C., Ferreira, J.C., Braga, J.P.: Solving ill-posed problems faster using fractional-order Hopfield neural network. J. Comput. Appl. Math. 381, 112984 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Batiha, I.M., Momani, S., Ouannas, A., Momani, Z., Hadid, S.B.: Fractional-order COVID-19 pandemic outbreak: Modeling and stability analysis. Int. J. Biomath. 15(1), 2150090 (2022)

    Article  MathSciNet  Google Scholar 

  5. Jan, R., Shah, Z., Deebani, W., Alzahrani, E.: Analysis and dynamical behavior of a novel dengue model via fractional calculus. Int. J. Biomath. 15(6), 2250036 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Naik, P.A., Zu, J., Naik, M.U.D.: Stability analysis of a fractional-order cancer model with chaotic dynamics. Int. J. Biomath. 14(6), 2150046 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, X., Wu, R.C.: Modified projective synchronization of fractional-order chaotic systems with different dimensions. Acta Mathematicae Applicatae Sinica 36(2), 527–538 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience 11(11), 1335–1342 (2008)

    Article  Google Scholar 

  9. Aguilar, C.J.Z., Aguilar, J.F.G., Martinez, V.M.A., Ugalde, H.M.R.: Fractional order neural networks for system identification. Chaos, Solitons & Fractals 130, 109444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nagamani, G., Shafiya, M., Soundararajan, G., Prakash, M.: Robust state estimation for fractional-order delayed BAM neural networks via LMI approach. J. Franklin Inst. 357(8), 4964–4982 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Prakash, M., Rakkiyappan, R., Lakshmanan, S., Young, H.J.: Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inform. Sci. 491, 74–89 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sanchez, L., Otero, J., Ansean, D., Couso, I.: Health assessment of LFP automotive batteries using a fractional-order neural network. Neurocomputing 391, 345–354 (2020)

    Article  Google Scholar 

  13. Wu, J.H.: Introduction to neural dynamics and signal transmission delay, De Gruyter Series in Nonlinear Analysis and Applications (2001)

  14. Driessche, P.V.D., Zou, X.F.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58(6), 1878–1890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, L.: Stabilizing Hopfield neural networks via inhibitory self-connections. J. Math. Anal. Appl. 292(1), 135–147 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu, Z.X., Du, H.B.: Neural-network-based bounded adaptive stabilization for uncertain stochastic nonlinear systems with time-delay. Cont. Theory Appl. 27(7), 855–860 (2010)

    MATH  Google Scholar 

  17. Liu, Z.G., Chen, A.P., Huang, L.H.: Existence and global exponential stability of periodic solution to self-connection BAM neural networks with delays. Phys. Lett. A 328(2–3), 127–143 (2004)

    Article  MATH  Google Scholar 

  18. Hu, H.J., Huang, L.H.: Stability and Hopf bifurcation analysis on a ring of four neurons with delays. Appl. Math. Comput. 213(2), 587–599 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Fan, D.J., Wei, J.J.: Hopf bifurcation analysis in a tri-neuron network with time delay. Nonlinear Anal: RWA 9(1), 9–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuan, S.L., Li, X.M.: Stability and bifurcation analysis of an annular delayed neural network with self-connection. Neurocomputing 73(16–18), 2905–2912 (2010)

    Article  Google Scholar 

  21. Huang, C.D., Li, Z.H., Ding, D.W., Cao, J.D.: Bifurcation analysis in a delayed fractional neural network involving self-connection. Neurocomputing 314, 186–197 (2018)

    Article  Google Scholar 

  22. Yuan, J., Huang, C.D.: Quantitative analysis in delayed fractional-order neural networks. Neural Process. Lett. 51, 1631–1651 (2020)

    Article  Google Scholar 

  23. Luo, Y.T, Zhang, L., Teng, Z.D, Zheng, T.T: Stability and bifurcation for a stochastic differential algebraic Holling-II predator-prey model with nonlinear harvesting and delay. Int. J. Biomath. 14(4), 2150019 (2021)

  24. Liu, H.C, Ge, B., Liang, Q.Y, Chen, J.Q: Bifurcation analysis of the cancer virotherapy system with time delay and diffusion. Int. J. Biomath. 15(8), 2250056 (2022)

  25. Cesare, L.D., Sportelli, M.: Stability and direction of Hopf bifurcations of a cyclical growth model with two-time delays and one-delay dependent coefficients. Chaos, Solitons & Fractals 140, 110125 (2020)

  26. Khan, A.Q., Javaid, M.B.: Subcritical Neimark-Sacker bifurcation and hybrid control in a discrete-time Phytoplankton-Zooplankton model. Int. J. Biomath. 15(4), 2250009 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Alidousti, J., Ghahfarokhi, M.M.: Stability and bifurcation for time delay fractional predator prey system by incorporating the dispersal of prey. Appl. Math. Model. 72, 385–402 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, C.D., Nie, X.B., Zhao, X., Song, Q.K., Tu, Z.W., Xiao, M., Cao, J.D.: Novel bifurcation results for a delayed fractional-order quaternion-valued neural network. Neural Netw. 117, 67–93 (2019)

    Article  MATH  Google Scholar 

  29. Alidousti, J.: Stability and bifurcation analysis for a fractional prey-predator scavenger model. Appl. Math. Model. 81, 342–355 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, C.D., Cao, J.D.: Bifurcations due to different delays of high-order fractional neural networks. Int. J. Biomath. 15(2), 2150075 (2022)

    Article  MathSciNet  Google Scholar 

  31. Zhao, L.Z., Huang, C.D., Cao, J.D.: Dynamics of fractional-order predator-prey model incorporating two delays. Fractals 29(1), 2150014 (2021)

    Article  MATH  Google Scholar 

  32. Xu, C.J., Aouiti, C., Liu, Z.X.: A further study on bifurcation for fractional order BAM neural networks with multiple delays. Neurocomputing 417, 501–515 (2020)

    Article  Google Scholar 

  33. Rihan, F.A., Velmurugan, G.: Dynamics of fractional-order delay differential model for tumor-immune system. Chaos, Solitons & Fractals 132, 109592 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Huang, C.D., Liu, H., Shi, X.Y., Chen, X.P., Xiao, M., Wang, Z.X., Cao, J.D.: Bifurcations in a fractional-order neural network with multiple leakage delays. Neural Netw. 131, 115–126 (2020)

    Article  MATH  Google Scholar 

  35. Huang, C.D., Mo, S.S., Cao, J.D.: Detections of bifurcation in a fractional-order Cohen-Grossberg neural network with multiple delays, Cognitive Neurodynamics, (2023), https://doi.org/10.1007/s11571-023-09934-2.

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  37. Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was jointly supported by the Youth Research Fund Project of Xinyang Normal University under [Grant No.2022-QN-044] and the Nanhu Scholars Program for Young Scholars of Xinyang Normal University [2018].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdai Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Gao, J., Mo, S. et al. Hopf bifurcation in a fractional-order neural network with self-connection delay. Nonlinear Dyn 111, 14335–14350 (2023). https://doi.org/10.1007/s11071-023-08553-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08553-0

Keywords

Navigation